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Chapter 3 

Basics 

It’s time to take a break from history and look at 

some math from school. Focus will be on concepts 

and notation rather than theorems and proofs. 

 

3.1 Learning Mathematics 

Fads in education come and go. I remember from my first years in school that 

we were exposed to sets, unions and intersections. No historical civilization I 

know of started their mathematical development from such concepts. The 

idea of complementing basic counting and arithmetic with set theory was part 

of New Mathematics. It all started with Sputnik and American fear of falling 

behind the Soviet Union in technology and science. Another, more fruitful 

consequence of the Sputnik crisis was the creation of NASA. 

I will not present any views on teaching methods. People are different; a 

method that works for some would be less suitable for others. But I do think 

it is important to master one level before going on to a higher more general 

and abstract level. Before using a calculator you should be skilled in handling 

calculations in your head and on paper, and before using a symbol handling 

calculator you should master algebraic manipulation and trigonometrical 

identities for derivation and integration. That said, devices, programs and 

apps are powerful tools for mathematical progress. 

In this chapter I will give a quick but slightly extended tour of what might be 

contained in school mathematics up to the university level. This will give me 

the opportunity to present mathematical notation and symbols that I will use 

freely in later chapters. Our everyday language is too ambiguous and too 

wordy for math. Looking back at history, poor notation has often been an 

obstacle for mathematical progress. Mathematical language can seem quite 

incomprehensible and discouraging to the uninitiated but the condensed and 

precise way of writing is essential to see the logical structure, get a quick 

overview and to free the very limited short-term memory from unnecessary 

information. 

Each branch of mathematics has its objects and operations that are defined by 

axioms. They are the starting point from which theorems can be derived.
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Statements formulated within this context can be true or false. Mathematics is 

about constructing interesting and useful branches and finding true statements 

that are informative and not obvious from the definitions. 

The axioms should be: 

• Self-consistent Not possible to deduce contradictions such as a statement 

 being both true and false. 

• Independent No axiom should be deducible from the others. Euclid’s 

 parallel axiom was debated for two millennia before being 

 replaced by axioms leading to non-Euclidean geometries. 

• Complete Can all relevant theorems be deduced to be either true or 

 false from the axioms, or are more assumptions needed. 

Getting theorems from axioms is done by doing logical deductions. This 

machinery forms a subject of its own outside of any particular mathematical 

system, like a universal tool for any science or argumentation. Mathematics 

itself is a powerful tool that can be used to analyze the tool of logic. 

Mathematical branches interconnect in complex and surprising ways so there 

is no given path in the mathematical landscape but some are more natural 

than others. I will start with logic and set theory. It is not the most natural 

way for young kids to learn about math but once you have learnt the basics it 

is a good starting point since it is a foundation on which all of mathematics 

can be based. 

3.2 Logic and Set theory 

A correctly formulated mathematical statement should be either true or false. 

This is the starting point of propositional logic also known as zeroth-order 

logic. Atomic statements (P,Q,R,…) are like variables that are either TRUE 

(1) or FALSE (0). They can be combined with logical operators into 

compound statements like: ¬(P ∧ Q) → (¬P ∨ ¬𝑄). 

 

 

 

 

 

 

 

 

 

Logical operators 

Unary 

NOT ¬ ¬P 

Binary 

AND ∧ P ∧ Q 

OR ∨ P ∨ Q 

IF…THEN… → P → Q

→ Q  

Truth table 

P Q ¬P P ∧ Q P ∨ Q P → Q 

1 1 0 1 1 1 

1 0 0 0 1 0 

0 1 1 0 1 1 

0 0 1 0 0 1 
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Note that IF P THEN Q has nothing to do with causation, P → Q is only false 

when P is TRUE and Q is FALSE whatever the meaning of P and Q. Another 

difference with everyday language is P OR Q which is true if one or both of P 

and Q is true. If you don’t want the option where both are true you need an 

exclusive or, XOR with the same truth table as (P ∨ Q) ∧ ¬(P ∧ Q). 

Other binary operators could be introduced like NAND(P, Q) ≡ ¬(P ∧ Q) or 

P ↔ Q ≡ (P → Q) ∧ (Q → P). Any operator 𝑓(P1, . . , Pn) with a given truth 

table can be expressed with ¬ and ∧, and they can be reduced to NAND:  

P NAND P ⟺ (P NAND Q) NAND (P NAND Q) ⇔ 

¬(P ∧ P) ⇔ ¬(¬(P ∧ Q) ∧ ¬(P ∧ Q)) ⇔ ¬¬(P ∧ Q) ⇔ 

¬P  P ∧ Q 

A common compromise between few and many is to use ¬, ∧, ∨ and →. 

Propositional logic is one of many formal systems. A formal system has a 

certain structure that can be used to formalize theories within logic or 

mathematics. 

Two forms of logical systems will be presented, propositional logic and 

predicate logic. They have a formal language with a list of symbols known as 

an alphabet; rules known as a grammar to construct well-formed formulas of 

the language and a deductive apparatus with axioms and 

rules for deducing logical theorems. This is done without 

any interpretation or meaning given to symbols, formulas 

or theorems. These “meaningless” aspects of formal 

languages are called syntax. They are studied in a branch 

of mathematics called proof theory. 

The “meaningful” aspects are called semantics. Meaning is given by intro-

ducing an interpretation of non-logical symbols. For instance, P and Q can be 

linked to propositions that are true or false. The logical symbols ¬ and ∨ 

always have their assumed meaning. The truth of sentences and formulas will 

depend on the interpretation. The interaction between syntax and semantics is 

studied in model theory. Focus here will be on notation and concepts that are 

widely used in general mathematics. Proof theory and model theory will be 

explored more fully in a later chapter.  
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Formal system 
Propositional logic 

𝓛(𝐀,𝛀, 𝐙, 𝐈) 
Example 

Alphabet 

Set A of 

atomic formulas 
A = {𝑝, 𝑞, 𝑟, 𝑠, 𝑡} 

Set Ω of 

logical operators 

Ω = Ω0⋃Ω1⋃…⋃Ω𝑛 

Ω0 = {0,1} , Ω1 = {¬} 

Ω2 = {∧,∨,→,↔} 

Grammar for 

well-formed 

formulas (wff) 

Inductively defined by 

• Elemens of set A 

• If 𝑝1, … , 𝑝𝑗  wffs and 

𝑓 ∈ Ω𝑗  then 

(𝑓(𝑝1, … , 𝑝𝑗)) is a wff 

(¬𝑝) 

(𝑞 ∧ 𝑟)  ,  (𝑠 → 𝑡) 

((𝑝 → (𝑞 ∧ (¬𝑟)))  ∨ 𝑠) 

etc. 

Deductive system 

 Axioms and 

 Inference rules 

Set I of axioms ∅ 

Set Z of inference rules 

{¬¬𝑝} ⊢ 𝑝 

{𝑝, 𝑝 → 𝑞} ⊢ 𝑞 

etc. 

 

An axiom is a wff of the system but it can also be an axiom schemata where 

variables can represent any wff, for example: 

1. 𝜙 → (𝜓 → 𝜙) 

2. (𝜙 → (𝜓 → 𝜒)) → ((𝜙 → 𝜓) → (𝜙 → 𝜒)) 

3. (¬𝜙 → ¬𝜓) → (𝜓 → 𝜙) 

All tautologies can be deduced with these axioms and Modus Ponens 

{𝑝, 𝑝 → 𝑞} ⊢ 𝑞 as inference rule. A tautology T is true in every interpretation 

⊨ 𝑇, i.e. 𝑇 is true for all assignments of truth-values to atomic formulas. 

The deductive system is free from interpretation. A formal proof within the 

system consists of a sequence of wffs, each of which is either an axiom or the 

result of an inference rule used on previous wffs in the sequence. The meta-

language symbol ⊢ read as “infers that” is used for inference rules and for 

proofs. If a wff 𝜓 has been deduced from a set Γ of premises then Γ ⊢ 𝜓. 

The deductive system is “designed” to fit our interpretation of {¬,∧,∨,→} as 

logical connectives {not, and, or, implies} so it is perfectly natural that we 

get the theorems we expect: 
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∧,∨ are both commutative 𝑝 ∧ 𝑞 ↔ 𝑞 ∧ 𝑝 We can write: 

 and associative  𝑝 ∨ (𝑞 ∨ 𝑟) ↔ (𝑝 ∨ 𝑞) ∨ 𝑟     𝑝 ∨ 𝑞 ∨ 𝑟 

→ is neither commutative 𝑝 → 𝑞 ↮ 𝑞 → 𝑝 

 nor associative (𝑝 → 𝑞) → 𝑟 ↮ 𝑝 → (𝑞 → 𝑟) 

∧,∨ are doubly distributive, 𝑝 ∧ (𝑞 ∨ 𝑟) ↔ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟) 

 inner and outer operators 𝑝 ∨ (𝑞 ∧ 𝑟) ↔ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟) 

 can be interchanged. (𝑎 ∧ 𝑏) ∨ (𝑐 ∧ 𝑑) ↔ (𝑎 ∨ 𝑐) ∧ ⋯∧ (𝑏 ∨ 𝑑) 

These rules are good to have in mind in the less formal use of logic in mathe-

matical proofs. Other useful formulas from propositional logic: 

((𝑝 → 𝑞) ∧ 𝑝) ⊢ 𝑞 Modus Ponens 

((𝑝 → 𝑞) ∧ ¬𝑞) ⊢ ¬𝑝 Modus Tollens 

¬(𝑝 ∧ 𝑞) ↔ (¬𝑝 ∨ ¬𝑞) De Morgan’s law I 

¬(𝑝 ∨ 𝑞) ↔ (¬𝑝 ∧ ¬𝑞) De Morgan’s law II 

(𝑝 → 𝑞) ↔ (¬𝑞 → ¬𝑝) Transposition 

(𝑝 → 𝑞) ↔ (¬𝑝 ∨ 𝑞) 

((𝑝 ∧ 𝑞) → 𝑟) ↔ (𝑝 → (𝑞 → 𝑟)) 

⊢ (𝑝 ∨ ¬𝑝) 

The rules obeyed by ∧, ∨ and ¬ when working on propositions suggests an 

algebra of logic. Such a system is called a Boolean algebra. It was studied by 

George Boole in his book The mathematical analysis of logic from 1847. The 

use of the word “algebra” can be a bit confusing. In school it usually means 

manipulating formulas with 𝑥 in them. In university it is often preceded by 

“abstract” and involves the study of algebraic structures, formalized systems 

based on sets of objects with given operators that obey specified axioms. 

These structures can be group-like, ring-like, lattice-like, algebra-like etc. An 

algebra in the latter sense is a vector space with a multiplication operator that 

takes two vectors into a third vector, a Boolean algebra is not an algebra in 

this sense. A Boolean algebra is a special case of lattice and ring structures. 

Boolean algebra is central for digital electronics and circuit engineering. 

Diagrams of circuits use the following symbols for logic gates: 

 

AND 

A ⋅ B 

 

OR 

A + B 

 

NOT 

A̅ 

 

NAND 

𝐴 ⋅ 𝐵̅̅ ̅̅ ̅̅  

 

NOR 

𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅  

 

XOR 

A⊕ B 

 

XNOR 

A⨁B̅̅ ̅̅ ̅̅ ̅ 
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Fig. 3.2.1  Digital circuits for binary addition of 1-bit and 4-bit numbers. 

Many branches of mathematics have close links to computer science. One 

important problem in this area is NP-completeness, how effective can you 

make an algorithm that decides a certain problem. The first problem to be 

shown to be NP-complete was the Boolean satisfiability problem (SAT). The 

question is to decide if there is an assignment of truth-values (interpretation) 

that makes a given propositional formula true. Such a formula is called 

satisfiable (𝑝 ∧ ¬𝑝 is unsatisfiable). 

The rules that are obeyed by propositional formulas are also followed by 

other systems. This makes it useful to strip Boolean algebra of its inter-

pretation and study it as a formal system. A formalized Boolean algebra is set 

with three operators ∧,∨, ¬ called meet, join, complement and two elements 

0/1 that are sometimes denoted ⊥/⊤ called bottom/top or least/greatest. 

Boolean algebra 

(𝐀,∧,∨,¬, 𝟎, 𝟏) 
Example 

A is a set 
All subsets of a set U  

𝐴 = 2𝑈 ≡ {𝑆: 𝑆 ⊆ 𝑈} (the power set) 

with operators and members: 

∧,∨: 𝐴 × 𝐴 → 𝐴 

¬:𝐴 → 𝐴 

0 ∈ 𝐴 and 1 ∈ 𝐴 

𝑥 ∧ 𝑦 ≡ 𝑥 ∩ 𝑦 

𝑥 ∨ 𝑦 ≡ 𝑥 ∪ 𝑦 

¬𝑥 ≡ 𝑈 − 𝑥 

0 ≡ ∅ and 1 ≡ 𝑈 

that satisfy the following axioms: 

𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 Associative 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧 

𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 Commutative 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 

𝑥 ∧ 1 = 𝑥 Identity 𝑥 ∨ 0 = 𝑥 

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) Distributive 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) 

𝑥 ∧ ¬𝑥 = 0 Complement 𝑥 ∨ ¬𝑥 = 1 
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 meet join complement XOR 

 𝒙 ∧ 𝒚 = 𝒙⨂𝒚 𝒙 ∨ 𝒚 ¬𝒙 = 𝑼\𝒙 𝒙⨁𝒚 

 

A Boolean algebra based on sets has operators meet (∩) and join (∪). The 

names become natural when viewed as Venn diagrams  

 

 

 

 

 

 

 

The duality in the axioms under exchange of ∧ with ∨ and 0 with 1 gives 

every Boolean algebra a dual with reversed roles of ∧ / ∨ and 0 / 1. A partial 

order can be introduced in a Boolean algebra by setting 𝑥 ≤ 𝑦 iff 𝑥 = 𝑦 ∧ 𝑥 

or equivalently 𝑦 = 𝑥 ∨ 𝑦. In this partial order 0 will be the least element and 

the greatest element will be 1. With respect to this partial ordering 𝑥 ∧ 𝑦 

coincides with infimum and 𝑥 ∨ 𝑦 coincides with supremum. 

 

 

 

 

Ordering of elements in a Boolean algebra of sets coincides with ordering by 

inclusion 𝑥 ≤ 𝑦 ⇔ 𝑥 ⊆ 𝑦. Finite posets can be illustrated by Hasse diagrams. 

 
Fig. 3.2.2  Possible Hasse diagrams for binary encoded subsets of a 4-element set 

From the Hasse diagrams it’s clear that a poset 𝑃 can have pairs (𝑥, 𝑦) that 

are not comparable, neither 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. To impose a Boolean algebra on 

a poset it should be bounded with a greatest element⊤ and a smallest one ⊥ 

such that ⊥ ≤ 𝑥 ≤ ⊤ for every 𝑥 ∈ 𝑃. If every pair in 𝑃 has a unique least 

upper bound called supremum and a unique greatest lower bound infimum 

then the poset is called a lattice 𝐿.  

A partially ordered set (𝑃,≤) or poset is a set with a binary relation ≤ s.t.: 

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⇒ 𝑥 = 𝑦 𝑥 ≤ 𝑥 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧 

Antisymmetric Reflexive Transitive 
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Every lattice has natural operations, join 𝑥 ∧ 𝑦 ≡ inf (𝑥, 𝑦) and meet 𝑥 ∨ 𝑦 =

sup(𝑥, 𝑦). If these operations are distributive over each other and 𝐿 is 

bounded and each element 𝑥 has a complement ¬𝑥 such that 𝑥 ∨ ¬𝑥 = ⊤ and 

𝑥 ∧ ¬𝑥 =⊥ then it is a complemented distributive lattice. Every Boolean 

algebra is a complemented distributive lattice and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2.3  Lattice and Boolean algebra. 

A Boolean algebra give rise to a Boolean ring (𝑅, +,⋅) by using 𝑥 ⋅ 𝑦 ≡ 𝑥 ∧ 𝑦 

and 𝑥 + 𝑦 ≡ 𝑥 ∨ 𝑦 ∧ ¬(𝑥 ∧ 𝑦) (XOR). A ring is the algebraic structure that 

captures the properties of addition and multiplication among integers. A 

Boolean ring has the extra property that 𝑥 ⋅ 𝑥 = 𝑥 for all elements in the ring. 

Every Boolean algebra is a Boolean ring and vice versa. 

Stone’s representation theorem for Boolean algebras from 1936 states that: 

Every Boolean algebra is isomorphic (basically the same) as a field of sets 

〈𝑋, ℱ〉 where ℱ ⊆ 2𝑋 is closed under intersection and union of pairs of sets 

and complements of sets. The proof associates every Boolean algebra 𝐵 with 

a topological space 𝑆(𝐵) called the Stone space. The sets that are both closed 

and open (clopen) of this space are isomorphic to 𝐵. Conversely, the clopen 

sets of any topological space will form a Boolean algebra. For a finite 

Boolean algebra ℱ = 2𝑋for some finite set 𝑋 which means that the number of 

elements in a finite Boolean algebra must be a power of two. 

If mathematics is the language of science then set theory is the language of 

mathematics. Natural numbers {1,2,3, … } ↷ {∅, {∅}, {{∅}}, … }, ordered pairs  

(𝑎, 𝑏) ↷ {𝑎, {𝑎, 𝑏}}, functions 𝑓: 𝑋 → 𝑌 can be seen as subsets 𝑆 of 𝑋 × 𝑌 s.t. 

{(𝑥, 𝑦1), (𝑥, 𝑦2)} ⊆ 𝑆 ⇒ 𝑦1 = 𝑦2 and ∀𝑥 ∈ 𝑋∃𝑦 ∈ 𝑌: (𝑥, 𝑦) ∈ 𝑆, and so on. 

An example of a distributive lattice is an 

integer 𝑛 ∈ ℤ+ together with its divisors, 

ordered by divisibility, 𝑥 ≤ 𝑦 iff 𝑥|𝑦. 

𝑥 ∧ 𝑦 = GCD(𝑥, 𝑦) 

𝑥 ∨ 𝑦 = LCM(𝑥, 𝑦)          ¬𝑥 = 𝑛 𝑥⁄  

Only for square-free 𝑛 = ∏ 𝑝𝑖
𝑛
𝑖=1  will the 

lattice be complemented, in other words a 

Boolean algebra. 
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Georg Cantor (1845–1918), the founder of modern set theory defines a set in 

Beiträge zur Begründung der transfiniten Mengenlehre as: 

“A set is a gathering together into a whole of definite, distinct objects of our 

perception or of our thought – which are called elements of the set”. 

Dictionary for the language of sets: 

Notion Notation Examples and comments 

Set { } {1,2,3} , ℙ = {2,3,5,7,11,13,17,… } 

Set-builder { : } , { | } 
{𝑥 ∶ 𝑥 ∈ ℝ ∧ 𝑥 > 1} = {𝑥 ∈ ℝ ∶ 𝑥 > 1} 

{𝑛2 − 𝑛 | 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ≤ 7} 

Membership ∈,∋, ∉, ∌ 2 ∈ {1,2,3} , ℙ ∌ 91 

Equality = ,≠ 𝐴 = 𝐵 ⇔ ( 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵 ∧  𝑥 ∈ 𝐵 ⇒ 𝑥 ∈ 𝐴 )  

Subset ⊆ ,⊇,⊈,⊉ 
𝐴 ⊆ 𝐵 ⇔ (𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵) 

 𝐴 ⊆ 𝐵 ⇔ 𝐵 ⊇ 𝐴  ( B is a superset of A ) 

Proper subset ⊂,⊃,⊄,⊅ 
𝐴 ⊂ 𝐵 ⇔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) 

Alternative notation for proper subset: ⊊,⊋ 

Empty set ∅ Set containing no elements, ∅ = { }  

Universal set 𝕌 Set with all relevant elements, context dependent. 

Union ∪ 𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵} 

Intersection ∩ 𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵} 

Disjoint union ⊔ 𝐴1 ⊔ 𝐴2 = 𝐴1 × {1} ∪ 𝐴2 × {2} 

Subtraction ∖,− 
𝐴 ∖ 𝐵 = 𝐴 − 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵} 

a.k.a. Relative complement 

Complement , 𝑐 , ′, ̅  𝐴𝑐 = 𝕌 ∖ 𝐴 , ∅̅ = 𝕌 

Symmetric 

difference 
Δ 𝐴Δ𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴) = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵) 

Cartesian 

product 
× 𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} 

Power set 𝒫(𝑆), 2𝑆 𝒫(𝑆) = {𝐴|𝐴 ⊆ 𝑆}, set of all subsets. 

Cardinality | | , # Number of elements in a set: #{𝑎, 𝑏} = 2, |ℝ| = 𝔠 
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Notation Special sets of numbers 

ℕ , ℕ1, ℤ+ Natural numbers: {1,2,3,… } 

ℕ0 , ℕ𝑘 , ℤ− ℕ0 = {0,1,2,… }  , ℕ𝑘 = {𝑘, 𝑘 + 1,… }  , ℤ
− = {−1,−2,… } 

ℤ Integers: {0, ±1,±2,… } 

2ℤ , 2ℤ+1 Even integers and odd integers 

ℚ Rational numbers: {
𝑎

𝑏
: (𝑎, 𝑏) ∈ ℤ × (ℤ ∖ {0})} 

ℝ Real numbers 

ℝ ∖ ℚ Irrational numbers 

𝔸 Algebraic numbers, solutions to polynomials over ℤ 

ℝ ∖ 𝔸 Transcendental numbers 

ℂ Complex numbers: {𝑎 + 𝑖𝑏: (𝑎, 𝑏) ∈ ℝ × ℝ} 

ℂ ∖ ℝ Imaginary numbers 

ℍ Quaternions: {𝑎 + 𝑖𝑏 + 𝑗𝑐 + 𝑘𝑑: (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℝ4} 

 

Notation Symbols and terms of general use in mathematics 

s.t. , : , | Such that 

⇒ If, Implication , Entailment 

iff, ⇔ If and only if 

∀ For all 

∃ There exists 

∄ , ¬∃ There does not exist 

∃! There exists exactly one 

∴ Therefore 

(a,b) Ordered pair 

(𝑥1, 𝑥2, … , 𝑥𝑛) Ordered 𝑛-tuple 

Q.E.D , ,∎ Quod Erat Demonstrandum “which is what should be proved”  

≡,≔ Definition 

⋯ , ⋮ , ⋱ , ⋰ Ellipsis, given sequence continues according to given pattern 
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There are many formulas like (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐  but they all coincide with 

rules from propositional logic and Boolean algebra ¬(𝐴 ∨ 𝐵) = ¬𝐴 ∧ ¬𝐵. A 

convenient way of checking such formulas and to keep track of different 

possibilities when properties overlap is to draw a Venn diagram. 

 

 

 

 

 

 

Fig. 3.2.4  Venn diagram for 2, 3, 4 and 5 sets. 

A useful formula for combinatorics and probability is the cardinality of a 

union of sets. It’s a generalization of |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| to 𝑛 sets. 

|⋃𝐴𝑖

𝑛

𝑖=1

| =∑|𝐴𝑖| −∑|𝐴𝑖 ∩ 𝐴𝑗| + ∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| − ⋯+ (−1)
𝑛−1|𝐴1 ∩…∩ 𝐴𝑛|

𝑖<𝑗<𝑘𝑖<𝑗

𝑛

𝑖=1

 

Index sets are used to handle infinite collections of sets. They can be of any 

size, example: ℝ = ⋃ 𝐴𝑖  𝑖∈ℝ with 𝐴𝑖 = {𝑖} and index set ℝ. 

A partition of a set 𝑋 is a separation of 𝑋 into mutually disjoint nonempty 

subsets 𝐴𝑖 such that, 𝑋 = ⋃ 𝐴𝑖𝑖∈𝐼  with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ when 𝑖 ≠ 𝑗. 

In a Cartesian product like ℝ × …× ℝ⏞      
𝑛

= ℝ𝑛 = {(𝑥1, … , 𝑥𝑛): (∀𝑖)(𝑥𝑖 ∈ ℝ)}, 

each element can be seen as a function 𝑓: {1, … , 𝑛} → ℝ. This is a natural 

way to generalize the definition of Cartesian products to indexed sets {𝑋𝑖}𝑖∈𝐼: 

∏𝑋𝑖 ≡

𝑖∈𝐼

{𝑓: 𝐼 → ⋃ 𝑋𝑖𝑖∈𝐼 |(∀𝑖)(𝑓(𝑖) ∈ 𝑋𝑖)}          𝑋
𝐼 ≡∏𝑋

𝑖∈𝐼

 

Component 𝑥𝑗 is retrieved via projection (𝑥1, … , 𝑥𝑛) ↦ 𝑥𝑗 . The general case 

is handled with projection maps 𝜋𝑗: ∏ 𝑋𝑖 → 𝑋𝑗𝑖∈𝐼  with 𝜋𝑗(𝑓) = 𝑓(𝑗). A vector 

like (𝑥1, 𝑥2, … ) is part of the set ℝℕ which is also denoted as ℝ𝜔. 

A formalized theory of sets will require first-order logic. Zermelo–Fraenkel 

set theory will be described in a later chapter, as will Cantor’s foundational 

contribution with ordinal and cardinal numbers. 
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If propositional logic is called zeroth-order logic there should be a first-

order logic. There is and it is called predicate logic. Predicate is a Boolean 

valued function 𝑃: 𝑋 → {𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}, an example from natural language 

would be 𝑃(𝑥) = "𝑥 is a philosopher". The variable 𝑥 ranges over a domain 

of discourse and when given a value from the domain of people it becomes a 

proposition like "Plato is a philosopher" that can be true or false. The 

extension of propositional logic to predicate logic lies in the use of variables 

and quantifiers; the universal quantification, for every ∀ and the existential 

quantification, there exists ∃. Quantifiers act on free variables which then 

become bounded variables. In a 2nd order logic, quantifiers can act over 

predicates or sets, 3rd order logic quantifies over sets of sets and in higher-

order logic quantification can be over predicates and sets nested to any depth. 

The principle of induction can be loosely formulated in 2nd order logic as: 

∀𝑃 ((0 ∈ 𝑃 ∧ ∀𝑖(𝑖 ∈ 𝑃 → 𝑖 + 1 ∈ 𝑃)) → ∀𝑛(𝑛 ∈ 𝑃)) 

This is the last of Peano’s axioms that formalize all properties of the natural 

numbers. A weaker first order system called Peano arithmetic introduces 

addition and multiplication operators. The induction axiom of 2nd order logic 

is replaced with axiom schemata of 1st order logic. Löwenheim-Skolem’s 

theorem shows that if there is an infinite model like ℕ in a 1st order logic then 

there will be non-standard models different from ℕ that satisfy all axioms. 2nd 

order logical systems can capture ℕ without non-intended models. 

Predicates can also be used with set-builder notation to form sets {𝑥|𝑃(𝑥)} 

and Venn diagrams can illustrate formulas like, “every philosopher is mortal” 

∀𝑥(𝑃(𝑥) → 𝑀(𝑥)) and “some mortals are not humans” ∃𝑥(𝑀(𝑥) ∧ ¬𝐻(𝑥)).  

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.5  Venn diagram of six sets or six predicates.
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First order logic Examples, logic Examples, math 

Alphabet 

Logical symbols 

  Logical connectives 

  Quantifier symbols 

  Brackets 

  Variables 

  Equality (optional) 

Non-logical symbols 

  Predicate symbols 

  Function symbols 

Logical symbols 

  ¬ , ∧ , ∨ , → , ↔ 

  ∀ , ∃ 

  ( ) 

  𝑥 , 𝑦 , 𝑧… or 𝑥0, 𝑥1, 𝑥2… 

  =     (Binary relation) 

 

Non-logical symbols 

  𝑃0
𝑛 , 𝑃1

𝑛, 𝑃2
𝑛… 𝑛 ≥ 0 

  𝑓0
𝑛  , 𝑓1

𝑛 , 𝑓2
𝑛 …  𝑛 ≥ 0 

Signature 𝝈 = (𝑺𝒇, 𝑺𝒓, 𝒂𝒓) 

Functions ∈ 𝑆𝑓  

Relations ∈ 𝑆𝑟 

𝑎𝑟 gives arity of 

     functions and relations 

 

Rings: 𝑆𝑓 = {+,⋅, −,0,1} with 

            arities (2,2,1,0,0) 

Sets:  𝑆𝑓 = {∅, ∁, 𝒫,∪,∩} 

           𝑆𝑟 = {∈,⊆} 

Grammar for wff  

Terms 𝒕𝒊 

  Inductively defined by: 

  1. Variables 

  2. 𝑓𝑖
𝑛(𝑡1, … , 𝑡𝑛)  

Well-formed formulas 𝝋𝒊  

  Inductively defined by: 

  1. 𝑃𝑖
𝑛(𝑡1, … , 𝑡𝑛) 

  2. 𝑡𝑖 = 𝑡𝑗 

  3. ¬𝜑𝑖 , 𝜑𝑖 ∧ 𝜑𝑗 , etc. 

  4. ∀𝑥𝑖(𝜑𝑗) , ∃𝑥𝑖(𝜑𝑗) 

 formulas built from 1 

 and 2 are called atomic. 

Terms 𝒕𝒊 

  𝑥 , 𝑦 , 𝑧  

  𝑓1
3(𝑥, 𝑓0

2(𝑦, 𝑧), 𝑓0
0()) 

 

 

Well-formed formulas 𝝋𝒊 

Atomic formulas: 

  𝑃(𝑥) , 𝑄(𝑥, 𝑓(𝑦)) , 𝑥 = 𝑦 

Non-atomic formulas: 

  𝑥 = 𝑦 ∧ ¬(𝑃(𝑥) = 𝑃(𝑓(𝑦))) 
  ∀𝑥∀𝑦(𝑃(𝑥) → ¬𝑄(𝑓(𝑦), 𝑧)) 

  ∀𝑛¬∃𝑥∃𝑦∃𝑧 

  (  𝑓0
3(𝑥, 𝑦, 𝑛) = 𝑓0

2(𝑧, 𝑛) 

     ∧   𝑄(𝑛, 𝑓2
0())   ) 

Terms 𝒕𝒊 

  −𝑧 , 𝐴 ∪ B 

  √𝑥 + 𝑦2 + 𝑓(𝑥, 𝑦) 

 

 

Well-formed formulas 𝝋𝒊 

Atomic formulas: 

  𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝐴 

  (𝑥 + 𝑦 + 𝑧)/3 ≥ (𝑥𝑦𝑧)1/3 

Non-atomic formulas: 

  𝑥 ∈ 𝒫(𝐴) → 𝑥 ⊆ 𝐴 

  ∀𝑥∀𝑦∀𝑧∀𝑛 

  (𝑥𝑛 + 𝑦𝑛 ≠ 𝑧𝑛  ∨ 𝑛 ≤ 2) 

Deductive system 

Axioms, axiom schemas 

and inference rules 

  Many variations exist: 

 Hilbert-style deduction 

 Natural deduction 

 Sequent calculus 

 etc. 

Universal instantiation 

  As axiom scheme 

    ∀𝑥𝜑 → 𝜑[𝑡 𝑥⁄ ] * 

  As inference rule 

    ∀𝑥𝜑 ⊢ 𝜑[𝑡 𝑥⁄ ] 

Existential generalization 

    𝜑[𝑡 𝑥⁄ ] ⊢ ∃𝑥𝜑 

etc. 

Robinson arithmetic axioms 

  1.  𝑆𝑥 ≠ 0 ** 

  2.  (𝑆𝑥 = 𝑆𝑦) → 𝑥 = 𝑦 

  3.  𝑦 = 0 ∨ ∃𝑥(𝑆𝑥 = 𝑦) 

  4.  𝑥 + 0 = 𝑥 

  5.  𝑥 + 𝑆𝑦 = 𝑆(𝑥 + 𝑦) 

  6.  𝑥 ⋅ 0 = 0 

  7.  𝑥 ⋅ 𝑆𝑦 = (𝑥 ⋅ 𝑦) + 𝑥 

* Substitution: 𝜑[𝑡/𝑥] where 𝑡 is a term, 𝑥 is a variable in 𝜑 and all free 

occurrences of 𝑥 in 𝜑 are replaced by the term 𝑡. 

 

** 𝑆𝑥 corresponds to successor function
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• Parentheses can be used for readability, excess use of parentheses is avoided by 

establishing an order of evaluation, from first to last ¬ ↷ ∧/∨ ↷ ∀/∃  ↷ →. 

  

• First order logic with equality is assumed here, a slight extension with a special binary 

predicate 𝑡𝑖 = 𝑡𝑗 that satisfies certain axioms and serves as an equality relation. 

 

• The number of arguments of functions and predicates (a.k.a. relations) is called arity. 

 

• Predicate symbols and functions can have arity in ℕ0, 𝑃𝑖
1(𝑥), 𝑃𝑖

2(𝑥, 𝑦), 𝑓𝑖
3(𝑥, 𝑦, 𝑧), … 

 

• Arity for 𝑛 ≥ 1 are called unary, binary, ternary etc. Arity-0 predicates are like 

propositional variables {𝑃, 𝑄, … } or constants {TRUE, FALSE}. Arity-0 functions 

are constant elements of 𝕌 the domain of discourse also known as the universal set. 

 

• Symbols of first-order logics that formalize mathematical structures are given by a 

signature defined by a triple 𝜎 = (𝑆𝑓, 𝑆𝑟 , 𝑎𝑟) with a set of function symbols 𝑆𝑓, a set 

of relation symbols 𝑆𝑟 and an arity function 𝑎𝑟: 𝑆𝑓 ∪ 𝑆𝑟 → ℕ0. 

Examples are: 𝑆𝑓 = {0,1, +,⋅} , 𝑆𝑓 = {∅,𝒫,∪,∩} , 𝑆𝑟 = {𝑇, 𝐹, ∈,⊆} or 𝑆𝑟 = {=,≤}. 

The cardinality of a signature 𝜎 is |𝜎| = |𝑆𝑓| + |𝑆𝑟| 

 

• Mathematical functions and relations are often written with infix or other notation: 

Function: +(𝑥, 𝑦) ↷ 𝑥 + 𝑦 , 𝒫1(𝑋) ↷ 2𝑋 , Relation (predicate): ≤ (𝑥, 𝑦) ↷ 𝑥 ≤ 𝑦 

 

• ∀ and ∃ can replace each other:∀𝑥𝑃𝑥 ↷ ¬∃𝑥¬𝑃𝑥 and ∃𝑥𝑃𝑥 ↷ ¬∀𝑥¬𝑃𝑥. 

 

• Universal and existential quantifiers do not commute, order matters as can be seen in 

a binary predicate like 𝐿(𝑥, 𝑦) = "x likes y", ∀𝑥∃𝑦𝐿(𝑥, 𝑦) ≠ ∃𝑦∀𝑥𝐿(𝑥, 𝑦). 
Another example is pointwise (1) and uniform (2) continuity of a function 𝑓:ℝ → ℝ. 

(1) ∀𝜀 > 0∀𝑥 ∈ ℝ∃𝛿 > 0∀ℎ ∈ ℝ (|ℎ| < 𝛿 → |𝑓(𝑥) − 𝑓(𝑥 + ℎ)| < 𝜀)    →  𝛿(𝜖, 𝑥) 
(2) ∀𝜀 > 0∃𝛿 > 0∀𝑥 ∈ ℝ∀ℎ ∈ ℝ (|ℎ| < 𝛿 → |𝑓(𝑥) − 𝑓(𝑥 + ℎ)| < 𝜀)    →  𝛿(𝜖) 
 

• Unique existence can be expressed as ∃! 𝑥𝑃(𝑥) ↷ ∃𝑥(𝑃(𝑥) ∧ ∀𝑦(𝑃(𝑦) → (𝑥 = 𝑦))) 
 

• In a formula like ∀𝑥(𝑃(𝑦) → ∃𝑧𝑄(𝑥, 𝑧)) is 𝑦 a free variable while 𝑥 and 𝑧 are bound. 

A formula with no free variables is a first-order sentence, it is either true or false. 

∀𝑦∃𝑥(𝑥2 = 𝑦) is true for 𝕌 = ℝ+ or ℂ but false when 𝕌 = ℝ whereas the truth of 

∃𝑥(𝑥2 = 𝑦) with 𝕌 = ℝ will depend on if 𝑦 is substituted with a negative or positive. 

 

• The deductive system is purely syntactic, a formalized way of deriving logical 

consequences of a set of wffs Γ, Γ ⊢ 𝜑. The derivation itself is a syntactic object. 

 

• Hilbert-Style deduction systems are axiomatic, many schemes of axioms and few 

inference rules, modus ponens and universal generalization: if ⊢ 𝑃(𝑥) then ⊢ ∀𝑥𝑃(𝑥) 
 

• Natural deduction systems replace axioms with rules of inference as much as possible. 
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3.3 Arithmetic 

The limitations of classical Greek mathematics; no zero, no negative numbers 

and no fractional arithmetic were not due to any lack of intelligence or 

creativity of the Greeks. It had more to do with preconceived, philosophically 

grounded notions of what a number is. A modern approach would be to 

introduce a neutral element with respect to addition, give it a symbol, and a 

meaning that amount to “nothing”, 𝑥 + 0 = 𝑥. Then we could introduce an 

imaginary number 𝑥̅ to each natural number 𝑥 and call it the additive inverse 

of 𝑥 with the property 𝑥 + 𝑥̅ = 0. Its meaning would be “a lack of 𝑥”. 

Arithmetic could be expanded to these new numbers: 

𝑥 + 𝑦̅ = {

𝑥 − 𝑦 if x > y
0          if 𝑥 = 𝑦
𝑦 − 𝑥̅̅ ̅̅ ̅̅ ̅ if x < y

𝑥̅ + 𝑦̅ = 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅

𝑥 − 𝑦̅ = 𝑥 + 𝑦

𝑥̅ − 𝑦 = 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅

𝑥̅ − 𝑦̅ = 𝑦 + 𝑥̅

𝑥 − 𝑦 = {

𝑥 − 𝑦 if x > y
0         if x = y
𝑦 − 𝑥̅̅ ̅̅ ̅̅ ̅ if 𝑥 < 𝑦

 

The rules of arithmetic would still apply for this extended set of numbers and 

𝑥 − 𝑦 has become meaningful also when 𝑦 > 𝑥. 

These new numbers are of course the negative numbers that we denote −𝑥. 

This notation and our name for it “minus” are the same that we use for 

subtraction; an unfortunate coincidence that has caused much confusion for 

children learning math and headaches for teachers teaching math. So much 

that elementary education in the U.S. has replaced the term “minus 𝑥” with 

“negative 𝑥". Math.stackexchange has a thread “Negative” vs “Minus” on the 

pros and cons of these conventions. The crucial difference is that subtraction 

is a binary operator whereas additive inverse is a unary operator. Some 

confusion such as having two calculator buttons with the same sign could 

have been avoided with a special symbol for negative, maybe     with one dot 

to show its unary nature with one argument after or below the symbol. 

Mathematical notations are full of possibilities, often decided by historical 

accident in a contest between old notation with tradition and acquaintance 

challenged by new and improved notation. If there had not been a symbol for 

pi already then 𝜏 ≡ 2𝜋 would surely be the natural constant to introduce. 

Another choice is the position of the operator in relation to the argument. 

Prefix 

−𝑥 

Postfix 

x! 

Around 

|𝑥| 

Upfix 

𝑥̅ 

Infix (↔) 

𝑥 + 𝑦 

Infix (↕) 
𝑥

𝑦
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−𝑛! = −(𝑛!) 

𝑎 𝑏 ⋅ 𝑐 =⁄ 𝑎 ⋅
1

𝑏
⋅ 𝑐 

𝑎 − 𝑏 + 𝑐 = 𝑎 + (−𝑏) + 𝑐 

 

 

Prefix notation is also called Polish notation whereas postfix notation is 

called reverse polish notation (RPN). Everybody with a HP-calculator is 

familiar with the advantages of using postfix operation. By putting numbers 

on a stack you can avoid parentheses and make your bench neighbor very 

confused when he or she has to borrow your calculator. Functional notation is 

usually written in prefix notation 𝑓(𝑥) or 𝑓𝑥 but with postfix notation 𝑥𝑓, 

reading direction and order of actions would become the same. 

 

 

 

 

 

 

Another common source of misunderstanding is the different meaning of 

parentheses in 𝑓(𝑥) and 𝑥(𝑦 + 𝑧). It would probably be better to use square 

brackets for function arguments 𝑓[𝑥]. 

The second use of parentheses is used to show the intended order of 

evaluation. The default precedence of operators is: 

1. Unary operators 

2. Exponents and roots 

3. Multiplication and division 

4. Addition and subtraction 

The ambiguity in point 3 and point 4 is resolved by calculating from left to 

right which is what you get if you treat division as multiplication with the 

reciprocal and subtraction as addition with additive inverse. Multiplication 

and addition are associative so order of evaluation is no longer an issue. 

Exponentiation is not associative (𝑎𝑏)𝑐 ≠ 𝑎(𝑏
𝑐). The natural choice is to do it 

the right-associative way 𝑎𝑏
𝑐
≡ 𝑎(𝑏

𝑐). Parentheses can be replaced with other 

brackets like [ ] or { } when it simplifies reading. 

The horizontal bar in the division and root symbol 

functions as a parenthesis. 

 

Summation and multiplication of many arguments is best done with the sum 

and product symbols, Greek capital letter S and Greek capital letter P. 

∑ 𝑎𝑖

𝑛

𝑖 = 1

≡ 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛    ∏ 𝑏𝑗

𝑗 ∈ ℤ+
≡ 𝑏1 ⋅ 𝑏2 ⋅ …   ∏ 𝑘

𝑛

𝑘 = 1

= 1 ⋅ 2 ⋅ … ⋅ 𝑛 ≡ 𝑛!

 Prefix 𝑥 𝑓𝑥 𝑔𝑓𝑥 

 Postfix 𝑥 𝑥𝑓 𝑥𝑓𝑔 

 

𝑓 𝑔 

√𝑥 + 𝑦 = (𝑥 + 𝑦)1 2⁄  

1

𝑥 + 𝑦
= 1/(𝑥 + 𝑦) 
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Big numbers part 2 

Repeated factorials 𝑛‼ is no match against repeated exponentiation 𝑛𝑛
𝑛
. 

In part one of our quest for large numbers we saw Knuth’s up arrows. The 

next step is Conway chained arrow notation created by John H. Conway. 

A chain of length 𝑛,  𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛 has a value defined recursively: 

1. 𝑝 → 𝑞 ≡ 𝑝𝑞   (𝑝, 𝑞 ∈ ℤ+) 

2. 𝑋 → 1 ≡ 𝑋     (𝑋 is any chained expression) 

3. 𝑋 → 𝑝 → (𝑞 + 1) ≡ 𝑋 → (𝑋 → (⋯ (𝑋 → (𝑋) → 𝑞)⋯ ) → 𝑞) → 𝑞⏟                            
𝑝 repetitions of 𝑋

 

Example: 

𝑎 → 𝑏 → 2 = 𝑎 → (𝑎 → ⋯(𝑎 → 𝑎 → 1)⋯ ) → 1) → 1⏟                          
𝑏 repetitions of 𝑎→

= 𝑎 → (𝑎 → ⋯(𝑎 → 𝑎𝑎 → 1)⋯) → 1 → 1⏟                          
𝑏−2 repetitions of 𝑎→

= 𝑎⋰
𝑎
}𝑏 levels = a ↑↑ b = a ↑2 𝑏

 

 

Chains of length three match Knuth’s up arrows, 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞. 

Calculate 3 → 3 → 3 → 2 and you’ll see Conway’s → outgrow Knuth’s ↑. 

Chains of length 5 will beat anything expressible with up-arrows. A good 

show of this is Metzler’s YouTube ”Ridiculously huge numbers”, part 3. 

Can numbers of these magnitudes that make a googolplex look like an 

infinitesimal be of any use? Yes, one such big number once occurred as 

an upper bound to the following problem. Connect all vertices in a cube 

of 𝑛 dimensions and color the edges blue or red. What is the smallest 𝑛 

for which every coloring has at least one single-colored graph of four 

coplanar vertices? This number 𝑁 was known to be finite 6 ≤ 𝑁 ≤ 𝑁. An 

upper bound 𝐺 called Graham’s number became famous in 1977 as the 

largest number ever used in a proof. 𝐺 = 𝑓64(4) with 𝑓(𝑛) = 3 ↑𝑛 3. In 

Conaway notation 3 → 3 → 64 → 2 < 𝐺 < 3 → 3 → 65 → 2. The upper 

and lower bounds have since improved to 13 ≤ 𝑁 ≤ 2 ↑↑↑ 6. 
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A famous anecdote of Gauss says that when he was eight years old his 

teacher gave the class a problem to keep them occupied; add all numbers 

from 1 to 100. After a few seconds Gauss gave the answer 5050 and said 

it was quite simple, just add 100+1 and multiply by 50. 

 

𝑆1(𝑛) = ∑𝑘 =
(𝑛 + 1) ⋅ 𝑛

2

𝑛

𝑘=1

   𝑆2(𝑛) = ∑𝑘2
𝑛

𝑘=1

 

 

The second problem looks as if it could be a polynomial of degree three. 

𝑛3

3
= ∫𝑥2

𝑛

0

𝑑𝑥 ≤∑𝑘2 ≤ ∫ 𝑥2𝑑𝑥 =
(𝑛 + 1)3 − 1

3

𝑛+1

1

𝑛

𝑘=0

 

3 ⋅∑𝑘2 = 𝑛3 + 𝑎2𝑛
2 + 𝑎1𝑛 + 𝑎0

𝑛

𝑘=0

 with 0 ≤ a2 ≤ 3 

𝑛 = 0 → 𝑎0 = 0
𝑛 = 1 → 𝑎1 + 𝑎2 = 2
𝑛 = 2 → 2𝑎1 + 4𝑎2 = 7

→ 3 ⋅∑𝑘2 =
2𝑛3 + 3𝑛2 + 𝑛

2

𝑛

𝑘=0

   (Conjecture) 

Proof by induction. 

It is true for n=0 , assume it is true for 𝑛 then: 

6 ⋅ ∑𝑘2 = 2𝑛3 + 3𝑛2 + 𝑛 + 6(𝑛 + 1)2 = 2(𝑛 + 1)3 + 3(𝑛 + 1)2 + (𝑛 + 1)

𝑛+1

𝑘=0

 

∴ ∑𝑘2 =
2𝑛3 + 3𝑛2 + 𝑛

6

𝑛

𝑘=1

 

Sum of powers:   𝑆𝑝(𝑛) = ∑𝑘𝑝 =
1

𝑝 + 1
∑(−1)𝑗 (

𝑝 + 1
𝑗
)𝐵𝑗𝑛

𝑝+1−𝑗

𝑝

𝑗=0

𝑛

𝑘=1

 

The Bernoulli numbers 𝐵𝑛 ∈ ℚ have deep connection to number theory and 

the Riemann zeta function 𝜁(𝑠). They occur in the Taylor expansion of 

tan(𝑥) and many other places, (𝐵𝑛)𝑛=0
∞ = (1,−

1

2
,
1

6
, 0, −

1

30
, 0,

1

42
, … ). 

𝜁(𝑠) = ∑
1

𝑛𝑠
= ∏

1

1 − 𝑝−𝑠
𝑝 is prime

∞

𝑛=1

  𝑠 ∈ ℂ ∖ {1} , 𝜁(−𝑛) = −
𝐵𝑛+1
𝑛 + 1

 𝑛 ∈ ℕ 
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The arithmetic properties of addition and multiplication among integers can 

be summarized as a set ℤ with two binary operators (+,⋅): ℤ × ℤ → ℤ, with 

neutral elements zero and one (ℤ, +,⋅ ,0,1) that satisfies: (Axioms of a ring) 

 (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) Addition is associative 

 𝑎 + 𝑏 = 𝑏 + 𝑎  commutative 

 𝑎 + 0 = 𝑎  has an additive identity 

 𝑎 + (−𝑎) = 0  and an additive inverse – 𝑎 

 (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) Multiplication is associative 

 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎  commutative  (optional for a ring) 

 𝑎 ⋅ 1 = 𝑎  has a multiplicative identity 

 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 Multiplication is distributive over addition 

Like we did for logical systems we can collect these properties or axioms and 

study them without any special interpretation in mind. This is practical since 

many structures obey the same rules, polynomials is one example. What we 

learn will apply to any algebraic structure that follows the rules. The name of 

the structure is a ring (𝑅, +,×, 0𝑅 , 1𝑅). It’s a bit more general than described 

above; multiplication does not have to be commutative so 1𝑅 must also obey 

1𝑅 ⋅ 𝑎 = 𝑎 for every element in 𝑅 and the distributive law should apply both 

from the left 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) and from the right (𝑏 + 𝑐) ×

𝑎 = (𝑏 × 𝑎) + (𝑐 × 𝑎). Our familiar (ℤ, +,⋅ ,0,1) is a commutative ring. 

Equations like 𝑎 + 𝑥 = 𝑏 are solved by introducing subtraction 𝑎 − 𝑏 ≡ 𝑎 +

(−𝑏). The natural numbers ℕ is not a ring, it does not have additive inverses 

and no guaranteed solution to 𝑎 + 𝑥 = 𝑏. 

The Greeks had philosophical concerns over incorporating fractional num-

bers into their arithmetic. For a long time they were relegated to geometry. 

To introduce division into our number system so that we can solve equations 

of the form 𝑎 ⋅ 𝑥 = 𝑏 we need to introduce rational numbers. The modern 

approach to introduce rational numbers works for any commutative ring with 

the additional property that the product of any two nonzero elements is 

nonzero. This is called an integral domain and its supersized version is a field 

of fractions. An example of a ring where this would not work is ℤ6, integers 

modulo 6. What would be the meaning of 1 2 ⋅ 1 3⁄⁄ ? 

The stage is set for a formal introduction of division and rational numbers. 

Rational numbers are ordered pairs (𝑝, 𝑞) ∈ ℤ × ℤ ∖ {0} where we regard 

some pairs like (1,2) and (2,4) as basically identical. This merger is done by 

an equivalence relation, (𝑝1, 𝑞1)~(𝑝2, 𝑞2) if and only if 𝑝1𝑞2 = 𝑝2𝑞1. 
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The concept of an equivalence relation on a set 𝑋 is closely related to a 

partitioning of the set 𝑋, as described on page 85. 

 
 

Addition, additive inverse and multiplication on the quotient field denoted 

by Quot(𝑅)or Frac(𝑅) of an integral domain 𝑅 is naturally defined: 

𝑝

𝑞
≔ [(𝑝, 𝑞)]    

𝑝1
𝑞1
+
𝑝2
𝑞2
: =
𝑝1𝑞2 + 𝑝2𝑞1  

𝑞1𝑞2
  −

𝑝

𝑞
≔
−𝑝

𝑞
         

𝑝1
𝑞1
⋅
𝑝2
𝑞2
: =
𝑝1 ⋅ 𝑝2
𝑞1 ⋅ 𝑞2

 

Every non-zero member of Quot(𝑅) has a multiplicative inverse, we can 

call it the reciprocal and use it to define division in Quot(𝑅). 

(
𝑝

𝑞
)
−1

≔
𝑞

𝑝
  (𝑝 ≠ 0)              

𝑝1
𝑞1

𝑝2
𝑞2
≔
𝑝1
𝑞1
⋅⁄ (
𝑝2
𝑞2
)
−1

=
𝑝1 ⋅ 𝑞2
𝑞1 ⋅ 𝑝2

 (𝑝2 ≠ 0) 

Integers ℤ are embedded by  𝑝 ↦ [(𝑝, 1)] into the rationals ℚ = Quot(ℤ). 

 

 

 

 

 

 

Distances between members of ℤ or ℚ is defined by 𝐷(𝑥, 𝑦) = |𝑥 − 𝑦|. 

|𝑧| = {
𝑧 if 0 ≤ 𝑧

−𝑧 if 𝑧 ≤ 0

Relations 

A binary relation between two sets 𝑋 and 𝑌 is 

a subset 𝑅 ⊆ 𝑋 × 𝑌. Two elements are related 

if (𝑥, 𝑦) ∈ 𝑅 which is written 𝑥 ∼ 𝑦 or 𝑥𝑅𝑦. 

In the table 𝑥 ∼ 𝑦 iff 𝑥 ⋅ 𝑦 = 0 for (𝑥, 𝑦) ∈ ℤ6
2 

 

An equivalence relation on a set 𝐴 satisfies: 

𝑥 ∼ 𝑥  Reflexivity 

𝑥 ∼ 𝑦 ⇒ 𝑦 ∼ 𝑥 Symmetry 

𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ⇒ 𝑥 ∼ 𝑧 Transitivity 

The set of elements  related to x, [𝑥]:= {𝑦|𝑥 ∼ 𝑦} is the equivalence class of 𝑥. 

Equivalence classes are either disjoint or equivalent. They partition the set 𝐴 

and together they form the quotient set of 𝐴 by ∼.  𝐴 ∼⁄ ≔ {[𝑥]|𝑥 ∈ 𝐴} 

× 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

 

A totally ordered set (𝑇,≤) a.k.a linear order is a partially ordered set 

where either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 for every pair in 𝑇. 

A total order on ℤ = ℤ− ∪ {0} ∪ ℤ+, is given by 𝑎 ≤ 𝑏 iff 𝑏 − 𝑎 ∈ {0} ∪ ℤ+  

ℚ+ = {𝑝
𝑞
|0 ≤ 𝑝 ⋅ 𝑞} ∖ {

0

1
}          ⟶         

𝑝1

𝑞1
≤

𝑝2

𝑞2
 iff 

𝑝2

𝑞2
−
𝑝1

𝑞1
∈ {0} ∪ ℚ+  
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With rational numbers and their arithmetic in place we can now solve the 

equations from chapter one, but to handle the repeating decimals such as 

1 3 = 0.333…⁄  we need to introduce limits. 

Let  𝑆𝑛 =∑
3

10𝑘
= 0. 33…3⏟  

𝑛 𝑑𝑖𝑔𝑖𝑡𝑠

.

𝑛

𝑘=1

The limit of 𝑆𝑛 as 𝑛 → ∞ is defined by  

lim
𝑛→∞

𝑆𝑛 = 𝑆   if   ∀𝜀 ∈ ℚ
+ ∃𝑁 ∈ ℕ ∶ (𝑛 > 𝑁 ⇒ |𝑆𝑛 − 𝑆| < 𝜀) 

Applied to 𝑥𝑛 =
1

𝑛
 we can choose 𝑁 =

1

𝜀
 and get lim

𝑛→∞

1

𝑛
= 0. 

A partial or total order on a set 𝐴 is a dense order iff for every 𝑥 ∈ 𝐴 and 

every 𝑦 ∈ 𝐴 s.t. 𝑥 < 𝑦 there is a 𝑧 ∈ 𝐴 s.t. 𝑥 < 𝑧 < 𝑦. ℚ is obviously dense 

𝑥 + 1

𝑛
→ 𝑥 as 𝑛 → ∞ and 𝑧 = 𝑥+𝑦

2
 is a number that fits the description. Even 

though rational numbers are dense they can still be counted as if they were 

standing on a line (𝑥1, 𝑥2, 𝑥3…). 

 
Fig. 3.5 Counting the rational numbers ℚ+ (reds have already been represented). 

Any two sets that are totally ordered, dense and countable are order-

isomorphic. For the usual order relations on natural numbers and algebraic 

numbers there must be a bijection 𝑓:ℚ → 𝔸 s.t. 𝑥 <ℚ 𝑦 ⇔ 𝑓(𝑥) <𝔸 𝑓(𝑦). 

A set with a distance measure is called a metric space. A Cauchy sequence is 

a sequence whose members approach each other. A complete metric space 𝑀 

is a space where every Cauchy sequence has a limit also in 𝑀. 

Distance measure: Cauchy sequence, (𝒂𝒏)𝒏=𝟏
∞ :  

𝐷:𝑀 × 𝑀 → [0,∞) ∀𝜀 > 0 ∃𝑁  ∀𝑚, 𝑛 > 𝑁 ∶  𝐷(𝑎𝑚 , 𝑎𝑛) < 𝜀 

𝐷(𝑥, 𝑦) ≥ 0  

𝐷(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 Complete metric space, 𝑴: 

𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥) (𝑎𝑛)𝑛=1
∞  a Cauchy sequence in 𝑀 ⇒ 

𝐷(𝑥, 𝑧) ≤ 𝐷(𝑥, 𝑦) + 𝐷(𝑦, 𝑧) ∃𝑎 ∈ 𝑀:  𝑎𝑛 → 𝑎 as 𝑛 → ∞
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ℚ is a metric space with distance measure 𝐷(𝑥, 𝑦) = |𝑥 − 𝑦|. The series 

defined by 𝑥1 = 1 and 𝑥𝑛+1 = 𝑥𝑛 2 + 1 𝑥𝑛⁄⁄  is a Cauchy sequence with no 

limit in ℚ since any limit would have to satisfy 𝑥2 = 2 which as we have 

seen is not a member of ℚ. Hence ℚ is uncomplete and there are many gaps 

to fill if every Cauchy sequence is to have a limit in ℚ. Every non-complete 

metric space 𝑀 can be made into a complete metric space 𝑀̅ that contains 𝑀 

as a dense subspace. A dense subspace means that every point in 𝑀̅ belongs 

to 𝑀 or is a limit point of points in 𝑀. 

Completion of 𝑀 is done by setting up the set of Cauchy sequences 𝐶. The 

distance between 𝑥 = (𝑥𝑛) and 𝑦 = (𝑦𝑛) is 𝐷(𝑥, 𝑦) ∶= lim
𝑛
𝐷(𝑥𝑛 , 𝑦𝑛).  To 

make it a proper distance measure (axiom 2) we introduce an equivalence 

relation, 𝑥~𝑦 iff 𝐷(𝑥, 𝑦) = 0 and let 𝑀̅ be the quotient set 𝐶/~. Any element 

𝑚 in 𝑀 is naturally embedded in 𝑀̅ as the sequence (𝑚,𝑚,… ). This can be 

done for ℚ if care is taken in not assuming the completeness of the real 

numbers since they are under construction ℚ̅ = ℝ. Addition and multi-

plication of Cauchy sequences are given by (𝑥𝑛) + (𝑦𝑛):= (𝑥𝑛 + 𝑦𝑛) 

and (𝑥𝑛) ⋅ (𝑦𝑛): = (𝑥𝑛 ⋅ 𝑦𝑛). In this way we get the real numbers ℝ with all 

its arithmetical properties as the completion of the rational numbers. There 

are many other ways of setting up the real numbers. 

Decimal notation has a natural connection to Cauchy sequences. 𝜋 is the 

equivalence class [(3, 3.1, 3.14, 3.141, 3.1415,… )] = 3.1415… . When I 

introduced my problems from chapter one and failed to convince one of my 

students that 0.999… = 1 I should have said. Yes, 0.999… and 1 represent 

different Cauchy sequences but they belong to the same equivalence class of 

the equivalence relation used when constructing ℝ from ℚ. 

Another construction is named after Richard Dedekind (1831–1916). In the 

Dedekind cut, ℚ is partitioned into two sets ℚ = 𝐿 ∪ 𝑈 in such a way that the 

lower set 𝐿 has no greatest element and all its elements are less than any 

element in the upper set 𝑈. If 𝑈 has a smallest element the cut represents that 

element, if not it defines an irrational that fills the gap in the cut. Ordering 

and arithmetic on Dedekind cuts (𝐿, 𝑈) and embedding of ℚ into them are 

easily defined with common set operations. 

 

 

 

 

Fig 3.3.1  Dedekind cut for 𝐿 = {𝑥 ∈ ℚ|𝑥2 < 2} and 𝑈 = ℚ ∖ 𝐿.
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After completion there are no gaps, the real numbers corresponds to the 

Greek geometric idea of the continuum on a straight line. Any bounded set 

𝑆 ⊂ ℝ has a greatest lower bound 𝑥 = inf(𝑆) in ℝ, the infimum and a least 

upper bound in ℝ, 𝑦 = sup(𝑆), the supremum. If 𝑆 is not bounded then 

inf(𝑆) = −∞ or sup(𝑆) = ∞. Infimum and supremum can also be used on 

subsets of partially ordered sets (𝑃, ≤). For natural numbers ordered by 

divisibility (ℕ, |) we get inf({𝑎, 𝑏}) = gcd(𝑎, 𝑏), greatest common divisor 

and sup({𝑎, 𝑏}) = lcm(𝑎, 𝑏), least common multiple. For the subset ordering 

(𝒫(𝑆), ⊆), inf({𝐴, 𝐵}) = 𝐴 ∩ 𝐵 and sup({𝐴, 𝐵}) = 𝐴 ∪ 𝐵. 

 

 

 

Fig 3.3.2  Supremum of a set. 

Real numbers can also be constructed by axioms. ℝ is a set 𝑹 that has 

elements (0,1), binary operators (+,⋅) and an order relation (≤) for which: 

 

1. (𝑹,+,⋅ ,0,1) is a field which means that for each 𝑥, 𝑦, 𝑧 ∈ 𝑹:   (Definition of a field) 

 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧   and   𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧 Associative 

 𝑥 + 𝑦 = 𝑦 + 𝑥   and   𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥 Commutative 

 𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧) Distributive 

 𝑥 + 0 = 𝑥 Additive identity 

 𝑥 ⋅ 1 = 𝑥 Multiplicative identity 

 𝑥 + (−𝑥) = 0 Additive inverse −𝑥 exists 

 𝑥 ⋅ (𝑥−1) = 1 Multiplicative inverse 𝑥−1 exists if 𝑥 ≠ 0 

2. (𝑹,≥) is a totally ordered set and for each 𝑥, 𝑦, 𝑧 ∈ 𝑹: 

 𝑥 ≤ 𝑥 Reflexive 

 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⇒ 𝑥 = 𝑦 Antisymmetry 

 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧 Transitive 

 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 Total 

3. (+,⋅) are compatible with the order (≤) and for each 𝑥, 𝑦, 𝑧 ∈ 𝑹: 

 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 Preservation of order under addition 

 𝑥 ≥ 0 and 𝑦 ≥ 0 ⇒ 𝑥 ⋅ 𝑦 ≥ 0 Preservation of order under multiplication 

4. The order is complete: 

 Every non-empty subset of 𝑹 bounded from above has a least upper bound in 𝑹. 

These axioms are enough to “characterize” ℝ. If (𝑅, 0𝑅 , 1𝑅, +𝑅,×𝑅, ≤𝑅) 

and (𝑆, 0𝑆, 1𝑆, +𝑆,×𝑆, ≤𝑆) are two models that satisfy all of these axioms 

then there will be a structure preserving bijection 𝑓: 𝑅 → 𝑆 such that: 

• 𝑓(0𝑅) = 0𝑆 and 𝑓(1𝑅) = 1𝑆 

• 𝑓(𝑥 +𝑅 𝑦) = 𝑓(𝑥) +𝑆 𝑓(𝑦)   and   𝑓(𝑥 ×𝑅 𝑦) = 𝑓(𝑥)  ×𝑆  𝑓(𝑦) 

• 𝑥 ≤𝑅 𝑦 ⇔ 𝑓(𝑥) ≤𝑆 𝑓(𝑦)
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Functions 

A function 𝑓 is a relation between a domain 𝑋 and a codomain Y such that 

each element 𝑥 ∈ 𝑋 is related to exactly one element 𝑦 = 𝑓(𝑥) ∈ 𝑌. 

 

 

 

 

 

 

 

 Pointwise operation: Composition: 

𝑓 ∗ 𝑔: 𝑋 → 𝑌    if ∗ defined on Y ℎ ∘ 𝑓: 𝑋 → 𝑍    if 𝑓(𝑋) ⊆ ℎ−1(𝑍) 

𝑥 ↦ 𝑓(𝑥) ∗ 𝑔(𝑥) 𝑥 ↦ ℎ(𝑓(𝑥)) 

If 𝐴 ⊆ 𝑋 then 𝑓(𝐴) ≡ {𝑓(𝑥)|𝑥 ∈ 𝐴} is called the image of 𝐴 under 𝑓. 

If 𝐵 ⊆ 𝑌 then 𝑓−1(𝐵) ≡ {𝑥 ∈ 𝐴|𝑓(𝑥) ∈ 𝐵} is the preimage of 𝐵 under 𝑓. 

The preimage of a single element 𝑓−1(𝑦) is the fiber of 𝑦 under 𝑓. 

 

If 𝑥 ≠ 𝑦 ⇒ 𝑓(𝑥) ≠ 𝑓(𝑦) then 𝑓 is an injective function. 

If 𝑓(𝑋) = 𝑌 then 𝑓 is a surjective function. 

If 𝑓 is both injective and surjective then 𝑓 is a bijective function. 

These terms were introduced by the Bourbaki group, a group of French 

mathematicians, that wrote under the pseudonym Nicolas Bourbaki. 

 

Every set 𝑋 has an identity function, id𝑋: 𝑋 → 𝑋 , 𝑥 ↦ 𝑥 and every 

bijective function 𝑓: 𝑋 → 𝑌 has an inverse 𝑓−1: 𝑌 → 𝑋 such that: 

𝑓−1 ∘ 𝑓 = id𝑋 and 𝑓 ∘ 𝑓−1 = id𝑌 

 

 

 

 

 

A restriction of 𝑓:𝑋 → 𝑌 to  𝑆 ⊂ 𝑋 is written 𝑓|𝑆: 𝑆 → 𝑌, 𝑥 ↦ 𝑓(𝑥). 

If 𝑔 is a restriction of 𝑓 then 𝑓 is an extension of 𝑔. 

 

The set of all functions 𝑓: 𝑋 → 𝑌 form a set denoted 𝑌𝑋 ≡ {𝑓|𝑓: 𝑋 → 𝑌}. 

 

𝑓: 𝑋 → 𝑌

𝑥 ↦ 𝑓(𝑥)

⬚
𝑔: 𝑋 → 𝑌

𝑥 ↦ 𝑔(𝑥)

⬚
ℎ: 𝑌 → 𝑍
𝑦 ↦ ℎ(𝑦)

 

 

 

• • 
• • 

𝑓 

𝑓−1 

𝑔 ℎ 

𝑔 ∘ 𝑓 

ℎ ∘ 𝑔 

Composition is associative 

ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 

If 𝑓:𝑋 → 𝑋 then 𝑓𝑛 ≡ 𝑓 ∘ 𝑓𝑛−1 

but not commutative 𝑔 ∘ 𝑓 ≠ 𝑓 ∘ 𝑔 

𝑓(𝑥) = 𝑥 − 1 , 𝑔(𝑥) = 2 ⋅ x 

 

𝑋 

𝑌 

𝑍 𝑓 

𝑔 ℎ 

𝑋 𝑌 
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Rational numbers are represented by two integers and they are countable. The 

real numbers can be represented by an infinite series of digits. 

𝑥 ∈ ℝ  ↭   𝑥 = ⋯𝑑1𝑑0. 𝑑−1𝑑−2⋯ 

 with 𝑑𝑖 ∈ {0,1… 𝑏 − 1} for some 𝑏 ∈ {2,3… } 

and 𝑑𝑖 = 0 when 𝑖 > 𝑁 for some 𝑁 ∈ ℤ 

This is the positional system in base 𝑏. Each digit 𝑑𝑖 represents a value that 

depends on its position 𝑖, 𝑑𝑖~𝑑𝑖 ⋅ 𝑏
𝑖. The point between the integer part and 

the rest is the radix point. The word “digit” is used in medicin and anatomy. 

It comes from the Latin “digitus” which means finger or toe. It is no wonder 

that most number system through history have used base 10. Assuming base 

10, the value of x is: 

𝑥 = ∑ 𝑑𝑖 ⋅ 10
𝑖

𝑖 ∈ ℤ

= ∑ 𝑑𝑁−𝑘 ⋅ 10
𝑁−𝑘

∞

𝑘 = 0

 

𝑥 corresponds to the class of Cauchy sequences represented by the rational 

numbers 𝑆𝑛 = ∑ 𝑑𝑛−𝑘10
𝑁−𝑘𝑛

𝑘=0 . Each digit sequence represents a unique real 

number except for  …𝑑𝑖+1(𝑑𝑖 − 1)999… and …𝑑𝑖+1𝑑𝑖000…. They 

represent the same number. My argument for this with my student was 0. 3̅ =

1 3⁄  so (× 3) ⇒ 0. 9̅ = 1. Initial zeros before the decimal point and trailing 

zeros after the decimal point can be ignored. 

Different symbols are used for digits in different parts of the world but 123 is 

written in the same direction whether it is used in a left-to-right written 

language such as English, Sanskrit or Hindi (Devanagari script) or in a right-

to-left written language such as Hebrew, Arabic, Persian or Urdu (Persian 

alphabet). Positional notation had its origin in India and spread to the west 

via the Arab world. It would have been a source of many mishaps had they 

chosen different conventions with a risk of mistaking 123 for 321. Some 

languages such as Danish and German use both directions when they speak 

of numbers like “einhundertdreiundzwanzig”. 

Two set of conventions exist for byte ordering in the digital world where 

numbers are handled in a binary, octal or hexadecimal base, 𝑏 = 2, 8 or 16. 

In a little-endian format as used in Intel processors the least significant byte 

of a word is stored in the lower memory address while a big-endian format as 

used by Motorola processors and Internet protocols stores word in reversed 

order. Today many processors are bi-endian with switchable endianness. 
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On page 3 with the division algorithm it was shown how a fraction 𝑝 𝑞⁄  leads 

to a string of digits (𝑑𝑁 …𝑑1𝑑0. 𝑑−1… )𝑏 that ends either in a string of zeros, 

effectively a finite expansion or a repeating block of digits. 

 

The gaps in ℚ, the irrational numbers correspond to infinite strings of digits 

with no repeating block. How many gaps are there? Cantor introduced a way 

to measure the size of infinite sets, their cardinality. For a finite set 𝐴 the 

cardinality is simply the number of elements in 𝐴, |𝐴| ∈ ℕ0, |∅| = 0. If there 

is a pairing of elements between 𝐴 and 𝐵, a bijection, then |𝐴| = |𝐵|. The 

same should apply to infinite sets. 

From periodic decimal to quotient 𝑝 𝑞⁄ . 

A periodic decimal can be written  𝑥 = (𝑎1…𝑎𝑖 . 𝑏1…𝑏𝑗𝑐1…𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑏

 

𝑥 = 𝑎1…𝑎𝑖 + 𝑏
−𝑗 ⋅ 𝑏1…𝑏𝑗 + 𝑏

−𝑗 ⋅ 0. 𝑐1…𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(𝑏𝑘 − 1) ⋅ 0. 𝑐1…𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑐1…𝑐𝑘   ⇒     0. 𝑐1…𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑐1…𝑐𝑘
𝑏𝑘 − 1

 

 

𝑥 = 𝑎1…𝑎𝑖 +
𝑏1…𝑏𝑗

𝑏𝑗
+

𝑐1…𝑐𝑘
𝑏𝑗+𝑘 − 𝑏𝑗

=
𝑃

𝑄
=
𝑃 GCD(𝑃, 𝑄)⁄

𝑄 GCD⁄ (𝑃, 𝑄)
=
𝑝

𝑞
 

Example: 𝑥 = 12. 345̅̅ ̅̅ ̅ with 𝑏 = 10 , 𝑖 = 2 , 𝑗 = 0 , 𝑘 = 3 

𝑥 = 12 +
345

999
=
12333

999
=
4111

333
 

Finite or infinite expansion and length of repeating block depends on base. 

(1.0101… )2 = 1 +
(01)2
22 − 20

= 1 +
0

21
+
(10)2
23 − 21

= 1 +
1

3
= (1.1)3 = 1. 3̅ 

Which fractions have finite expansions? 

𝑝

𝑞
= ⌊
𝑝

𝑞
⌋ +∑

𝑑𝑖
𝑏𝑖

𝑁

𝑘=1

  (× 𝑏𝑁) ⇒   
𝑝𝑏𝑁

𝑞
 ∈ ℤ     (𝑝, 𝑞) = 1  ⇒ 

𝑞 can have no prime factors other than those in the base. 

Base 10: 𝑏 = 2 ⋅ 5 ⇒ 𝑝 𝑞⁄  has an finite decimal expansion if 𝑞 = 2𝑚5𝑛 

𝑝

𝑞
 has an infinite decimal expansion if 𝑞 ∈ {3,6,7,9,11,12,13,14,15,17, … }  
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|𝐴| = |𝐵| if there is a bijective function 𝑓: 𝐴 → 𝐵. 

|𝐴| ≤ |𝐵| if there is an injective function 𝑓: 𝐴 → 𝐵. 

|𝐴| < |𝐵| if |𝐴| ≤ |𝐵| and not |𝐴| = |𝐵|. 

A set 𝑆 is countable iff |𝑆| = |ℕ1|, 𝑆 = {𝑓(1), 𝑓(2), … }. The first letter in the 

Hebrew alphabet is used for infinite cardinals. Countable sets have car-

dinality aleph-null, |ℕ1| = ℵ0. Dedekind defined an infinite set as a set that 

has the same cardinality as a proper subset, |ℕ0| = |ℕ1| (ℵ0 + 1 = ℵ0) since 

𝑓: ℕ0 → ℕ1, 𝑥 ↦ 𝑥 + 1 is a bijection. Transfinite arithmetic is not the same 

as finite arithmetic. The rational numbers are countable |ℚ| = ℵ0. 

If the number of gaps |ℝ ∖ ℚ| is countable we could combine them with the  

rational numbers into an enumeration for ℝ. 

Assume there exists an enumeration of real numbers in (0,1): 𝑥1, 𝑥2, 𝑥3, … 

𝑥𝑖 = 0. 𝑑𝑖1𝑑𝑖2…   with  𝑑𝑖𝑗 ∈ {0,1, … ,9}. 

𝑥1 = 0. 𝑑11𝑑12… 

𝑥2 = 0. 𝑑21𝑑22… 

 ⋮               ⋮ 

𝑥𝜔 = 0. 𝑑1𝑑2… with 𝑑𝑖 = {
1 if 𝑑𝑖𝑖 = 2
2 if 𝑑𝑖𝑖 ≠ 2 

 

𝑥𝜔 ∈ (0,1) has a unique representation and it is not in the list ⇒  

{𝑥 ∈ ℝ|0 < 𝑥 < 1} is not countable ⇒ 

|ℝ| ≥ |(0,1)| > ℵ0 

This proof uses Cantor’s diagonal argument. The cardinal number of the 

continuum is denoted by 𝔠. Cantor proved that every cardinal number has a 

next-larger cardinal: ℵ0 ,ℵ1 ,ℵ2 ,…. . The assumption that there is no set with a 

size between ℕ and ℝ is known as the continuum hypothesis,  𝔠 = ℵ1. 

3.4 Discrete mathematics 

Discrete in this context, not to be confused with discreet is the opposite of 

continuous. Discrete mathematics is an umbrella term for diverse fields of 

mathematics with a focus on discrete properties. The archetypal discrete set is 

the set of integers, discrete mathematics deals with countable sets. Things 

excluded could be called “continuous mathematics” based on quantities that 

vary continuously. Branches of mathematics with much discrete content are 

computer science, combinatorics, cryptology, graph theory, number theory, 

algebra and analysis when it is based on intervals or discrete time steps. 
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Two typical problems belonging to discrete mathematics would be, “What is 

the probability that two students in a class of 30 have the same birthday?” or 

“Is it  possible to make a roundtrip in the city of Königsberg with seven 

bridges and visit every district and cross each bridge exactly once?”. 

 

 

 

 

 

The first problem is handled in the field of combinatorics and the latter 

problem is dealt with in graph theory. 

3.4.1 Combinatorics 

Combinatorics is often about counting; how many ways to form a certain 

pattern, forming permutations, selecting items from a collection or parti-

tioning a set according to some criteria. In combinatorial optimization the 

goal is to find the best solution from a finite set of possibilities, like the 

travelling salesman problem. Combinatorial problems arise in every field of 

mathematics, not least in algebra, probability, topology and geometry. 

The birthday problem needs clarification. No twins, each student’s birthday 

probability distribution is independent of the others and spread equally over 

365 days. The number of combinations #(DD) with every birthday on 

different days and the total number of combinations#(T) are: 

#(DD) = 365 ⋅ 364 ⋅ … ⋅ (365 − (30 − 1))⏟                    
30 factors

=
365!

335!
#(T) = 36530 

𝑃(some have the same birthday) = 1 −
365!

335! ⋅ 36530
≈ 70% 

365! is too big for most calculators, Stirling’s approximation of 𝑛! gives: 

𝑛! ~√2𝜋𝑛 (
𝑛

𝑒
)
𝑛

→ log(𝑛!)~
log(2𝜋𝑛)

2
+ 𝑛log (

𝑛

𝑒
) → 365! ~10778 

Expressions like #(DD) to count sequences without repetition are often given 

on calculators with symbols like 𝑃(𝑛, 𝑘), 𝑛𝑃𝑘 or something similar. An 

alternative and more telling notation is falling and rising factorials. 

𝑛𝑘 ≡ 𝑛(𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)⏟              
𝑘 factors

   ( Pronuounced “𝑛 to the 𝑘 falling” ) 

𝑛𝑘 ≡ 𝑛(𝑛 + 1)⋯ (𝑛 + 𝑘 − 1)⏟              
𝑘 factors

   ( Pronounced “𝑛 to the 𝑘 rising” ) 

A 

B 

C 

D 
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The number of injective functions 𝑓: 𝐴 → 𝐵 with |𝐴| = 𝑛 , |𝐵| = 𝑘 is 𝑛𝑘. A 

sequence of length 𝑛 (without repetions) from a set of 𝑛 objects is a per-

mutation (reordering). The number of ways to pick 𝑘 objects (no order) from  

𝑛 objects, #{𝐴 ⊆ 𝑆|#𝑆 = 𝑛 ∧ #𝐴 = 𝑘} is: 

𝑛𝑘

𝑘!
=

𝑛!

(𝑛−𝑘)!𝑘!
≡ (

𝑛
𝑘
)  ( Pronounced “𝑛 choose 𝑘” ) 

Another symbol often seen on calculators is 𝐶(𝑛, 𝑘) or 𝑛𝐶𝑘. Integers of this 

type are called binomial coefficents since it is the number of ways to pick a 

term with 𝑘 𝑥′𝑠 from the expansion of (𝑥 + 𝑦)𝑛 = (𝑥 + 𝑦)⋯ (𝑥 + 𝑦)⏟            
𝑛 factors

. 

(𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑘
) 𝑥𝑘𝑦𝑛−𝑘𝑛

𝑘=0  

 

 

 

 

 

 

 

 

Fig 3.4.1  Pascals triangle with binomial coefficients and some of their identities. 

The binomial theorem has a multinomial version with multinomial coefficients: 

(𝑥1 + 𝑥2 +⋯+ 𝑥𝑚)
𝑛 = ∑ (

𝑛
𝑘1, 𝑘2, … , 𝑘𝑚

) 𝑥1
𝑘1𝑥2

𝑘2 …𝑥𝑚
𝑘𝑚

𝑘1+⋯+𝑘𝑚=𝑛

 

(
𝑎1 + 𝑎2 +⋯+ 𝑎𝑚
𝑎1, 𝑎2, … , 𝑎𝑚

) ≡
(𝑎1 + 𝑎2 +⋯+ 𝑎𝑚)!

𝑎1! 𝑎2! ⋯𝑎𝑚!
 

The laws 𝑥𝑚𝑥𝑛 = 𝑥𝑚+𝑛, 𝑥𝑚/𝑥𝑛 = 𝑥𝑚−𝑛 and (𝑥𝑚)𝑛 = 𝑥𝑚𝑛 for positive 

integers makes it natural to introduce 𝑥0 ≡ 1 and 𝑥−𝑛 ≡ 1 𝑥𝑛⁄  to extend the 

laws to all integers. The simplest case of a law is often interesting as a start in 

an inductive proof or recursive definition. Conventions should be chosen to 

reflect that. For the factorial this means 0! ≡ 1. Another way to see this: 

One way to pick
all objects

   1 = (
𝑛
𝑛
) =

𝑛!

𝑛! ⋅ 0!
→ 0! = 1 

In “continuous mathematics” the factorial has a natural extension in the 

gamma function 𝑧! = Γ(𝑧 + 1) which is defined for all 𝑧 ∈ ℂ ∖ ℤ−. 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 3 

4 4 6 

(
𝑛
𝑘
) = (

𝑛
𝑛 − 𝑘

) 

(
𝑛
𝑘
) = (

𝑛 − 1
𝑘 − 1

) + (
𝑛 − 1
𝑘
) 

∑ (
𝑚
𝑟
)

𝑛

𝑚=0

= (
𝑛 + 1
𝑟 + 1

) 

∑(
𝑛
𝑘
)

𝑛

𝑘=0

= 2𝑛 

(
𝑛
𝑘
) =

𝑛

𝑘
(
𝑛 − 1
𝑘 − 1

) 

∑(
𝑚
𝑘
) (

𝑛
𝑟 − 𝑘

)

𝑟

𝑘=0

= (
𝑚 + 𝑛
𝑟

) 

(
𝑛
𝑚
) (
𝑚
𝑘
) = (

𝑛
𝑘
) (
𝑛 − 𝑘
𝑚 − 𝑘

) 

∑(−1)𝑘 (
𝑛
𝑘
) = 0

𝑛

𝑘=0
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For 00 there appear to be two incompatible choices 𝑥0 → 1 and 0𝑥 → 0 but 

𝑓(𝑥) = 0𝑥 is not very important and combinatorial arguments are more 

fundamental to decide the value of 00:    ( 𝑥𝑥 → 1 as 𝑥 → 0 ) 

(1 + 0)0 = ∑ (
0

𝑘1, 𝑘2
) 1𝑘10𝑘2 = (

0
0
) ⋅ 10 ⋅ 00

𝑘1+𝑘2=0
𝑘𝑖≥0

→ 00 ≡ 1 

(
0
0
) =

0!

0! ⋅ 0!
= 1 . There is one  subset of ∅  ( ∅ ⊆ ∅ ).  

The most natural definitions for sums and products of zero elements are: 

∑ 𝑎𝑖 ≡ 0

𝑖 ∈ ∅

  
additive
identity

            ∏ 𝑎𝑖
𝑖 ∈ ∅

≡ 1   
multiplicative
identity

 

Binomial coefficients have two cousins called Stirling numbers of the first 

and second kind, [
𝑛
𝑘
] and {

𝑛
𝑘
}. The second kind is the most common. They 

can be defined in combinatorial, functional or algebraic terms: 

{
𝑛
𝑘
} is the number of ways to put 𝑛 different balls in 𝑘 equal boxes with no 

empty box or the number of ways to partition a set of 𝑛 elements into 𝑘 non-

empty subsets. The symbol can be read “𝑛 subset 𝑘”. 

𝑛! {
𝑛
𝑘
} is the number of surjective 𝑓: 𝐴 → 𝐵 with |𝐴| = 𝑛 and |𝐵| = 𝑘. 

{
𝑛
𝑘
} =

1

𝑘!
∑ (−1)𝑘−𝑗 (

𝑘
𝑗
) 𝑗𝑛

𝑘

𝑗=0
 

Stirling numbers of the first kind [
𝑛
𝑘
] is the number ways to arrange 𝑛 objects 

into 𝑘 non-empty cycles. The symbol can be read “𝑛 cycle 𝑘”. A cycle like 

𝐴 → 𝐵 → 𝐶 → 𝐷 can be written in 4 different ways [𝐴, 𝐵, 𝐶, 𝐷] = 

[𝐵, 𝐶, 𝐷, 𝐴] = [𝐶, 𝐷, 𝐴, 𝐵] = [𝐷, 𝐴, 𝐵, 𝐶]. Example, [
4
2
] = 11 with cycles: 

[1,2,3] + [4] [1,2,4] + [3] [1,3,4] + [2] [2,3,4] + [1]

[1,3,2] + [4] [1,4,2] + [3] [1,4,3] + [2] [2,4,3] + [1]
  

[1,2] + [3,4]

[1,3] + [2,4]

[1,4] + [2,3]
  

{
𝑛
𝑘
} = {

𝑛 − 1
𝑘 − 1

} + 𝑘 {
𝑛 − 1
𝑘

} 

[
𝑛
𝑘
] = [

𝑛 − 1
𝑘 − 1

] + (𝑛 − 1) [
𝑛 − 1
𝑘

] 

1
1 1

1   3  1
1 7    6  1

1   15 25 10 1

 

1
1 1

2   3  1
 6  11  6  1

24 50 35 10 1

 

𝑛 𝑘 ⋅ 𝑛 ⋅ 𝑘 
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3.4.2 Simplified model of decimal expansion 

Let 𝑟1, 𝑟2, … be a sequence of integers, 𝑟𝑘 ∈ {0,1, … , 𝑞 − 1} for some 𝑞 ∈ ℤ+, 

just like the rests that appear in the long division algorithm on page 3. Each 

new 𝑟𝑘 will be chosen independently of the others with uniform probability 

distribution. The sequence is stopped as soon as 𝑟𝑘 becomes zero 

𝑟1, 𝑟2, … , 𝑟𝑖 , 0 or if 𝑟𝑘 occurs earlier in the sequence 

 𝑟1, 𝑟2, … , 𝑟𝑖⏟      
𝑖 digits

, 𝑟𝑖+1, … , 𝑟𝑖+𝑗⏟      
𝑗 digits

, 𝑟𝑖+𝑗+1 = 𝑟𝑖+1. 

Example: 𝑞 = 5 with 𝑃(𝑖, 𝑗) the probability of 𝑖 “pre-period digits” and 𝑗 
“repeating digits”. 

𝑟1 

𝑟2 

𝑟3 

𝑟4 

𝑟5 

Probability tree 

0 1 2 3 4 

𝑃(0,0) 

𝑃(1,0) 𝑃(0,1) 

𝑃(2,0) 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

𝑃(0,2) 𝑃(1,1) 

𝑃(3,0) 𝑃(0,3) 𝑃(1,2) 𝑃(2,1) 

𝑃(4,0) 𝑃(0,4) 𝑃(1,3) 𝑃(2,2) 𝑃(3,1) 

Each branch is chosen with probability 

1 5⁄  and the probability of a node is 

the product of the probabilities in the 

branches traversed to reach the node. 

Isolated dots represent repetitions of 

subtrees similar to previous subtree. 

For instance, a node of type 𝑃(0,2) 

occurs 4 ⋅ 3 = 42 times in the tree 

while a node of type 𝑃(1,3) occurs 4 ⋅

3 ⋅ 2 ⋅ 1 = 44 = 4! times. 

𝑃(𝑞, 𝑖, 𝑗) =
(𝑞 − 1)𝑖+𝑗

𝑞𝑖+𝑗+1
 

𝑖 ≥ 0 , 𝑗 ≥ 0 , 0 ≤ 𝑖 + 𝑗 < 𝑞 

⬚ 𝑃(0,0) =
1

5
𝑃(0,1) =

4

52
𝑃(0,2) =

42

53
𝑃(0,3) =

43

54
𝑃(0,4) =

44

55

𝑃෨(0) 𝑃(1,0) =
4

52
𝑃(1,1) =

42

53
𝑃(1,2) =

43

54
𝑃(1,3) =

44

55
⬚

𝑃෨(1) 𝑃(2,0) =
42

53
𝑃(2,1) =

43

54
𝑃(2,2) =

44

55
⬚ ⬚

𝑃෨(2) 𝑃(3,0) =
43

54
𝑃(3,1) =

44

55
⬚ ⬚ ⬚

𝑃෨(3) 𝑃(4,0) =
44

55
⬚ ⬚ ⬚ ⬚

𝑃෨(4) ⬚ ⬚ ⬚ ⬚ ⬚
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𝑥 

The probability for 𝑛 = 𝑖 + 𝑗 digits in the sequence 𝑟1, … , 𝑟𝑛 is: 

𝑃෨(𝑞, 𝑛) = (𝑛 + 1)
(𝑞−1)𝑛

𝑞𝑛+1
 with 0 ≤ n < q 

The sum of probabilities in the nodes 

of a subtree equals the probability of 

the branch it is attached to. As a result: 

 

 

 

 

 

 

 

 

 

 
 

Fig 3.4.2  Probability distributions. 

The likelihood of different number of digits in the sequence is shown above 

with probability mass functions (PMF) for various 𝑞. As 𝑞 grows they 

approach a certain form that can be illustrated by probability densities 

𝑃෨(𝑞, 𝑛) (1 𝑞⁄ )⁄ . They are sampled and rescaled 𝑛 ↷ 𝑥𝑞 with 0 ≤ 𝑥 < 1 to fit 

in the same diagram as if they were probability density functions (PDF). 

The model does not fit the properties of decimal expansions from page six. 

𝑝

𝑞
=
100 000

101 001
= 0. 990089207…099900000⏟                

16 640 digits

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝑞 = 101001 ≠ 2𝑚5𝑛 ⇒ no repeating digits but the probability for this in the 

model is Sum[𝑃(𝑞, 𝑖, 0), {𝑖, 0, 𝑞 − 1}] which is less than 4‰. The same low 

probability in the model applies for 𝑝 𝑞⁄  having no pre-periodic digits 

Sum[𝑃(𝑞, 0, 𝑗), {𝑗, 0, 𝑞 − 1}] < 4‰ but 𝑝/𝑞 has no pre-periodic digits. 

The model also predicts that it is highly unlikely to get long sequences. 

𝑃෨(𝑞, 10 000) ≈ 10−224 and 𝑃෨(𝑞, 20 000) ≈ 10−924 so the probability that 

𝑝/𝑞 should need more than 10% of the maximal number of digits in the 

decimal expansion Sum[𝑃෨(𝑞, 𝑛), {𝑛, 0.1𝑞, 𝑞 − 1}] is miniscule whereas 𝑝/𝑞 

in fact has 16 640 repeating digits, just 16% less than the maximal number. 

The numbers 𝑝 and 𝑞 were chosen to get long periods, but long periods are 

not as exceptional as the model predicts. The period of decimal expansions 

will be analyzed further when we get to number theory. 

∑ (𝑛 + 1)
(𝑞 − 1)𝑛

𝑞𝑛+1
= 1

𝑞 − 1

𝑛 = 0

 

 

𝑞 = 5 

𝑞 = 10 

𝑞 = 25 

𝑞 = 50 

𝑞 = 10 
𝑞 = 25 

𝑞 = 100 

𝑞 = 500 

𝑞 = 2000 
𝑓(𝑞, 𝑥) 𝑃෨(𝑞, 𝑛) 

𝑛 

∫ 𝑓(𝑞, 𝑥)𝑑𝑥 ≈ 1
1

0
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3.4.3 Sequences, Recursion and Difference equations 

Definition 1. A sequence is a function 𝑓: ℕ0 → 𝑆 with 𝑆 = ℤ,ℝ, ℂ or some 

other set. It can be written as: 

𝒂̂ = 〈𝑎0, 𝑎1, … 〉 or 𝒂̂ = 〈𝑎𝑛〉 with 𝑎𝑛 = 𝒂̂(𝑛) 

Examples are the arithmetic sequence where each element is the arithmetic 

mean of its neighbors, 𝒂̂ = 〈𝑥 + 𝑛𝑦〉 = 〈𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦,… 〉 and the 

geometric sequence where each element is the geometric mean of its 

neighbors, 𝒈̂ = 〈𝑥𝑦𝑛〉 = 〈𝑥, 𝑥𝑦, 𝑥𝑦2, … 〉. Sequences are often defined 

recursively: 

𝒂̂ − {
𝑎𝑘 = 𝑎𝑘−1 + 𝑦
𝑎0 = 𝑥

𝒈̂ − {
𝑔𝑘 = 𝑦𝑔𝑘−1
𝑔0 = 𝑥

𝒙 − {
𝑥𝑘 = 𝑟𝑥𝑘−1(1 − 𝑥𝑘−1)

𝑥0 = 𝑥0  (logistic map)
 

Natural operations on sequences are addition 𝒙 + 𝒚̂ = 〈𝑥𝑛 + 𝑦𝑛〉, multipli-

cation by a constant 𝛼𝒙 = 〈𝛼𝑥𝑛〉. The partial sums of a sequence 〈𝑎𝑛〉 is: 

〈𝑠𝑛〉 with 𝑠𝑛 = 𝑎0 + 𝑎1 +⋯+ 𝑎𝑛 (𝑛 + 1 terms) {
𝑠𝑛 = 𝑠𝑛−1 + 𝑎𝑛
𝑠0 = 𝑎0

 

𝒂̂: 𝑠𝑛 =∑𝑥 + 𝑘𝑦 = 𝑥(𝑛 + 1) + 𝑦
𝑛(𝑛 + 1)

2

𝑛

𝑘=0

= (𝑛 + 1) (
𝑎0 + 𝑎𝑛
2

) 

𝒈̂: 𝑠𝑛 =∑𝑥𝑦𝑘 =
𝑥

1 − 𝑦
(1 − 𝑦)(1 + ⋯+ 𝑦𝑛) = 𝑥

1 − 𝑦𝑛+1

1 − 𝑦

𝑛

𝑘=0

 

Closed formulas for 𝑠𝑛 are exceptions, upper and lower bonds based on 

integrations or approximations are what you can expect in the general case. 

A recurrence relation 𝑥𝑛 = 𝑓(𝑥𝑛−1, 𝑛) with 𝑛 = 1,2, … and initial value 𝑥0 

can be seen as an equation to be solved. Iterated calculations might be the 

fastest way for computation but a closed formula 𝑥𝑛 = 𝑔(𝑥0, 𝑛) can reveal 

other properties like the asymptotic behavior of the sequence. Equations of 

this type are often called difference equations. They are the counterpart of 

differential equations in continuous mathematics. 

Theorem 1. A difference equation 𝑥𝑛 = 𝑓(𝑥𝑛−1, 𝑛) has a unique solution 𝒙 

for every initial value 𝑥0 = 𝑏 with 𝑥𝑘 in the codomain of 𝑓. 

Proof. 𝑥0 = 𝑏 gives a unique value to 𝑥1 = 𝑓(𝑏, 1) = 𝑐 which gives a unique 
value to 𝑥2 = 𝑓(𝑐, 2) = 𝑑 which gives a unique value to 𝑥3 etc. 

Differential equations has a corresponding theorem on unique solutions. Its 

proof is less obvious. 
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The name “difference equation” for recurrence relations is based on the 

difference operator Δ(〈𝑥𝑛〉) = 〈𝑥𝑛+1 − 𝑥𝑛〉, 𝑛 = 0,1, …. Other operators on 

sequences that are useful are: 

𝐼〈𝑥𝑛〉 ≡ 〈𝑥𝑛〉 Identity operator 

𝐸〈𝑥𝑛〉 ≡ 〈𝑥𝑛+1〉 Forward shift operator 

𝐸𝑘〈𝑥𝑛〉 ≡ 〈𝑥𝑛+𝑘〉 𝑘 steps forward 

∆〈𝑥𝑛〉 ≡ 〈𝑥𝑛+1 − 𝑥𝑛〉 Forward difference operator 

∆𝑘〈𝑥𝑛〉 ≡ ∆(∆
𝑘−1〈𝑥𝑛〉) 𝑘

𝑡ℎ forward difference 

∇〈𝑥𝑛〉 ≡ 〈𝑥𝑛 − 𝑥𝑛−1〉 Backward difference 𝑛 = 1,2, … 
𝐸 = 𝐼 + ∆ Operator identity 

𝐸𝑘 = (𝐼 + ∆)𝑘 =∑ (
𝑘
𝑖
) ∆𝑘

𝑘

𝑖=0
→ 𝑥𝑛+𝑘 = (

𝑘
0
) 𝑥𝑛 + (

𝑘
1
)∆𝑥𝑛 +⋯+ (

𝑘
𝑘
)∆𝑘𝑥𝑛 

∆𝑘= (𝐸 − 𝐼)𝑘 

Any recurrence relation with 𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑘 can be expressed with 𝑥𝑛 and 

∆, ∆2, … , ∆𝑘. 3𝑥𝑛+2 − 4𝑥𝑛+1 + 8𝑥𝑛 = 0 ↷ 3∆
2𝑥𝑛 + 2∆𝑥𝑛 + 7𝑥𝑛 = 0. 

Difference equations and differential equations share many properties. The 

parallell extrends to partial differential equations with one-dimensional 

sequences replaced by multi-dimensional grids. 

A diffrence equation like 𝑥𝑛 = 𝛼𝑥𝑛−1 + 𝛽𝑥𝑛−2 + 𝛾 needs two initial values 

𝑥0 = 𝑏0 and 𝑥1 = 𝑏1 to give a unique sequence. The order of a difference 

equation equals the difference between the highest and lowest ocurring index 

of the sequence-variable. The order corresponts to the number of initial 

values needed. 

Definition 2. A difference equation is called linear if it can be written as 

ℒ(𝒙) = 𝒉̂ with an operator ℒ that satisfies the ciriteria of a linear operator: 

ℒ(𝒂̂ + 𝒃̂) = ℒ(𝒂̂) + ℒ(𝒃̂)

ℒ(𝛼𝒂̂) = 𝛼ℒ(𝒂̂)
 

If 𝒉̂ = 〈ℎ𝑛〉 = 〈0〉 then ℒ(𝒙) = 𝟎 is called a homogenous equation. 

Example: 𝑥𝑛 + 𝑝𝑛𝑥𝑛−1 + 𝑞𝑛𝑥𝑛−2 = ℎ𝑛 is a linear 2nd order inhomogenous 

difference equation. It’s linear in 𝒙 = 𝛼𝒙1 + 𝛽𝒙𝟐 even  though 𝑝𝑛, 𝑞𝑛 and ℎ𝑛 

may be non-linear functions of 𝑛. For a linear operator ℒ the following 

theorem is quite obvious. 

Theorem 2. If 𝒚̂ solves ℒ(𝒙) = 𝒈̂ and 𝒛̂ solves ℒ(𝒙) = 𝒉̂ then 𝒙 = 𝒚̂ + 𝒛̂ 

solves ℒ(𝒙) = 𝒈̂ + 𝒉̂. 

The general solution to ℒ(𝒙) = 𝒈̂ reduces to finding the general solution 𝒙𝒉 

to the homogenous equation ℒ(𝒙) = 𝟎 and one particular solution 𝒙𝒑 to 

ℒ(𝒙) = 𝒈̂ since 𝒙 = 𝒙𝒑 +𝒙𝒉 = 𝒙′𝒑 + 𝒙𝒑 − 𝒙′𝒑 + 𝒙𝒉⏟        
𝐬𝐨𝐥𝐯𝐞𝐬 ℒ(𝒙̂)=𝟎

. 
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The first step to find a closed form solution is to look at first order homo-

genous linear difference equations with a constant coefficient: 

𝑥𝑛 − 𝑟𝑥𝑛−1 = 0 , 𝑛 ∈ ℕ1   →   𝑥𝑛 = 𝑟
𝑛𝑥0  , 𝑛 ∈ ℕ0  →   𝒙 = 𝐶〈𝑟

𝑛〉 

It’s a geometic sequence with constant 𝐶 determined by the initial value 𝑥0. 

Trying 𝑥𝑛 = 𝐶𝑟
𝑛 on 𝑥𝑛 + 𝑝𝑥𝑛−1 + 𝑞𝑥𝑛−2 = 0 leads to 𝑟2 + 𝑝𝑟 + 𝑞 = 0 

with roots 𝑟1 and 𝑟2. If 𝑟1 ≠ 𝑟2 the solution will be 𝑥𝑛 = 𝐶1𝑟1
𝑛 + 𝐶2𝑟2

𝑛 with 

constants 𝐶1 and 𝐶2 determined uniquely by 𝑥0 and 𝑥1. 

{

𝑥𝑛 − 2𝑥𝑛−1 + 2𝑥𝑛−2 = 0
𝑥0 = 1
𝑥1 = 2

 →  𝑟2 − 2𝑟 + 2 = 0 →  𝑟 = 1 ± 𝑖 → 

𝑥𝑛 = 𝐶1(1 + 𝑖)
𝑛 + 𝐶2(1 − 𝑖)

𝑛     {
𝑥0 = 1
𝑥1 = 2

  →  
𝐶1 = (1 − 𝑖) 2⁄ = 2−1/2𝑒−

𝜋
4

𝐶2 = (1 + 𝑖) 2⁄ = 2−1/2𝑒+
𝜋
4

 

 

In polar form: 𝑥𝑛 = 2
𝑛 2⁄ (cos 𝑛𝜋

4
+ sin 𝑛𝜋

4
) = 2(𝑛+1) 2⁄ sin (𝑛+1)𝜋

4
 

A linear homogenous equation of order 𝑘 with constant coefficients 𝑝𝑖  

(∗) 𝑥𝑛 + 𝑝1𝑥𝑛−1 + 𝑝2𝑥𝑛−2 +⋯+ 𝑝𝑘𝑥𝑛−𝑘 = 0 

is associated with an equation called the characteristic equation 

(∗∗)  𝑟𝑘 + 𝑝1𝑟
𝑘−1 + 𝑝2𝑟

𝑘−2 +⋯+ 𝑝𝑘−1𝑟 + 𝑝𝑘 = 0 

The general solution to (∗) is a direct parallell to the differential equations 

where 𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, … are replaced with 𝑥(𝑡), 𝑥′(𝑡), 𝑥′′(𝑡), … . 

Theorem 3. Let 𝑟1, 𝑟2, … , 𝑟𝑡 be the distinct solutions to the characteristic 

equation (∗∗) with multiplicities 𝑚1, 𝑚2, … ,𝑚𝑡,(𝑚1 +𝑚2 +⋯+𝑚𝑡 = 𝑘). 
The general solution to (∗) is given by: 

𝒙 = ∑ ∑ 𝐴𝑖𝑗〈𝑛
𝑗𝑟𝑖
𝑛〉

𝑚𝑗−1

𝑗 = 0

𝑡

𝑖 = 1

  

With 𝑘 constants 𝐴𝑖𝑗 ∈ ℂ, uniquely determined by x0, 𝑥1, … , 𝑥𝑘−1. 

The proof is the same as for differential equations, I will not give it here. The 

treatment of inhomogenous difference equations ℒ(𝒙) = 〈ℎ(𝑛)〉 with ℎ(𝑛) a 

polynomial, exponential, or trigonometric function is also an exact parallell 

to differential equations. Finding a particular solution to the in-homgenous 

linear equation with constant coefficients will be handled later together with 

differential equations. 
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A difference equation can just as a differential equation occur as a system of 

equations. An example of this is the resulting resistance in the following 

circuit diagram with 2𝑛 + 1 resistors and total resistance 𝑅𝑛. 

 

 

 

 

 

The second diagram is a parallell coupling followed by a serial coupling. 

𝑅𝑛 = (𝑅𝑛−1
−1 + 𝑅−1)−1 + 𝑅         𝑥𝑛 = 𝑅𝑛 𝑅⁄ → {

𝑥𝑛 =
2𝑥𝑛−1+1

𝑥𝑛−1+1

𝑥0 = 1
(∗) 

𝑥0 ∈ ℚ ∧ (𝑥𝑘 ∈ ℚ ⇒ 𝑥𝑘+1 ∈ ℚ). Let 𝑥𝑛 = 𝑝𝑛 𝑞𝑛⁄  with 𝑝𝑛 , 𝑞𝑛 ∈ ℤ
+. 

𝑝𝑛

𝑞𝑛
=

2𝑝𝑛−1+𝑞𝑛−1

𝑝𝑛−1+𝑞𝑛−1 
 with { 

𝑝0 = 1
𝑞0 = 1

  →  (
𝑝𝑛
𝑞𝑛
) ≡ 𝐩𝑛 = 𝐀𝐩𝑛−1  with 𝐀 = (

2 1
1 1

) 

The non-linear equation (∗) has become linear with solution 𝐩𝑛 = 𝐀𝑛𝐩0. The 

matrix 𝐀 is diagonalizable which means that there is an invertable matix 𝐒 

and a matrix 𝐃 that is diagonal. 

𝐀 = 𝐒𝐃𝐒−𝟏 → 𝐀𝑛 = 𝐒𝐃𝑛𝐒−𝟏    𝐃 = (
𝜆1 0
0 𝜆2

) → 𝐃𝑛 = (
𝜆1
𝑛 0

0 𝜆2
𝑛) 

Matrices and diagonalization are part of linear algebra covered in chapter 5. 

𝜆1 and 𝜆2 are roots of the characteristic equation |𝐀 − 𝜆𝐈| = 0. 𝐒 is found by 

calculating eigenvectors to the roots. The result is: 

𝜆 =
3 ± √5

2
→ 𝑥𝑛 =

𝜆1
𝑛+1 − 𝜆2

𝑛+1

𝜑𝜆1
𝑛 − 𝜑̂𝜆2

𝑛      (
𝜑 = (1 + √5) 2⁄

𝜑̂ = (1 − √5) 2⁄
) 

𝑅∞
𝑅
= lim

𝑛→∞
𝑥𝑛 =𝜑 = 1.618…      (

𝜑 = (1 + √5) 2⁄

The golden section
) 

Non-linear equations like the logistic map 𝑥𝑘 = 𝑟𝑥𝑘−1(1 − 𝑥𝑘−1) have the 

potential for very complex and dynamical behavior. We will study them in a 

later chapter that deals with non-linearity and chaos theory. 

𝑅 

𝑅 𝑅 𝑅 𝑅 

𝑅 𝑅 𝑅 

𝑅𝑛−1 𝑅 

𝑅 

Fig.  3.4.3 The logistic map, cobweb diagram and limits of 𝑥𝑘 versus 𝑟. 
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3.4.4 Generating functions 

Generating functions is a holistic approach to sequences 𝒈̂ = 〈𝑔𝑛〉 where the 

numbers 𝑔𝑛 are treated as coefficients of 𝑧𝑛 in a formal power series: 

𝐺(𝑧) = ∑ 𝑔𝑛𝑧
𝑛 = ∑ 𝑔𝑛𝑧

𝑛

𝑛 ∈ ℤ

∞

𝑛 = 0

 ( if 𝑔𝑛 is set to zero for 𝑛 < 0 ) 

𝐺(𝑧) is called the generating function for  𝒈̂ but is not really a function with 

domain and codomain. Convergence does not matter, 𝑧 is more of a formal 

symbol with algebraic properties resembling a real or complex variable. 

Genarating functions (GF) can also be given for a multi-dimensional array of 

numbers 𝐺(𝑥, 𝑦) = ∑ 𝑔𝑚,𝑛𝑥
𝑚𝑦𝑛𝑚,𝑛 . A notation for retrieving coefficients is 

[𝑥𝑚𝑦𝑛]𝐺(𝑥, 𝑦) ≡ 𝑔𝑚,𝑛. GFs can be operated on in some obvious ways.  

𝛼𝐹(𝑧) + 𝛽𝐺(𝑧) = ∑ (𝛼𝑓𝑛 + 𝛽𝑔𝑛)𝑧
𝑛

𝑛   GF of 𝑓 + 𝑔̂ 

𝑧𝑚𝐺(𝑧) = ∑ 𝑔𝑛−𝑚𝑧
𝑛

𝑛   Right shift of 𝑔̂, 𝑚 steps 

𝑧−𝑚(𝐺(𝑧) − 𝑔0 −⋯− 𝑔𝑛−1𝑧
𝑛−1) Left shift of 𝑔̂, 𝑚 steps 

𝐺(𝑐𝑧) = ∑ 𝑐𝑛𝑔𝑛𝑧
𝑛

𝑛   GF of 〈𝑐𝑛𝑔𝑛〉 

𝐺′(𝑧) = ∑ (𝑛 + 1)𝑔𝑛+1𝑧
𝑛

𝑛   𝑧𝐺′(𝑧) GF of 〈𝑛𝑔𝑛〉 

∫ 𝐺(𝑡)𝑑𝑡
𝑧

0
 =∑ 𝑛−1𝑔𝑛−1𝑧

𝑛
𝑛≥1  𝐷−1𝒈̂ = 𝑔0𝑧 + 𝑔1𝑧

2/2 +… 

𝐻(𝑧) = 𝐹(𝑧)𝐺(𝑧) = ∑ 𝑓𝑘𝑔𝑛−𝑘𝑧
𝑛

𝑛,𝑘   
(𝑓0 + 𝑓1𝑧 +⋯ )(𝑔0 + 𝑔1𝑧 +⋯ ) = 

𝑓0𝑔0 + (𝑓0𝑔1 + 𝑓1𝑔0)𝑧 + ⋯ 

 

The sequence 𝒉̂ = 〈ℎ𝑛〉 = 〈∑ 𝑓𝑘𝑔𝑛−𝑘𝑘 〉 = 𝒇̂ ⋆ 𝒈̂ that is characterized by 

𝐻(𝑧) = 𝐹(𝑧)𝐺(𝑧) is called the convolution of 𝒇̂ and 𝒈̂. Convolution is 

commtative, associative and extends naturally 𝒇̂ ⋆ 𝒈̂ ⋆ 𝒉̂ = 〈∑ 𝑓𝑖𝑔𝑗ℎ𝑘𝑖+𝑗+𝑘=𝑛 〉 

The Fibonacci sequence 𝒇 ̂ = 〈0,1,1,2,3,5,8,11, … 〉 is defined recursively by 

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 , 𝑓0 = 0 , 𝑓1 = 1 and in close form by 𝑓𝑛 = (𝜑
𝑛 − 𝜑̂𝑛)/√5. 

Generating functions can sometimes be expressed in closed form. For the 

Fibonacci sequence 𝐹(𝑧) = ∑ 𝑓𝑛𝑧
𝑛 = 𝑧/(1 − 𝑧 − 𝑧2)𝑛 . The closed form 

representations of infinite sequences of numbers is the reason for calling GF 

a holistic approach. All numbers in the sequence are integrated into one 

package. One starting point for assigning closed forms to power series’ is: 

1 + 𝑧 + 𝑧2 +⋯ =
1

1 − 𝑧
   
(1 − 𝑧)(1 + 𝑧 + 𝑧2 +⋯+ 𝑧𝜔) and 1 have
the same coefficients for all finite powers.
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Closed forms of GFs and operations on closed forms can be formalized in a 

strict and logically sound way. Without doing this I will present some 

sequences and their closed form GFs. The notation  [𝑃(𝑥1, … , 𝑥𝑛)] with 𝑛-ary 

predicate function 𝑃 has value 1 when true and 0 otherwise, e.g.[𝑚=𝑛]=𝛿𝑚,𝑛. 

Sequence GF Closed form 

< 0,… , 0,1,0, … > ∑ [𝑛 = 𝑚]𝑧𝑛𝑛≥0   𝑧𝑚 

< 1,−1,1, −1… > ∑ (−1)𝑛𝑧𝑛𝑛≥0   1/(1 + 𝑧) 

< 1,0,1,0… > ∑ [2|𝑛]𝑧𝑛𝑛≥0 = ∑ 𝑧2𝑛𝑛   1/(1 − 𝑧2) 

< 1,2,3, … > ∑ (𝑛 + 1)𝑧𝑛𝑛≥0   1/(1 − 𝑧)2 

 

The cumulative sum of a sequence < 𝑔𝑛 >, given by 〈𝑔0, 𝑔0 + 𝑔1, … 〉 has 

GF given by (1 − 𝑧)−1𝐺(𝑧) since 1/(1 − 𝑧) = 1 + 𝑧 + 𝑧2 +⋯ and 

1

1 − 𝑧
𝐺(𝑧) = ∑ 1𝑘𝑔𝑛−𝑘𝑧

𝑛 =∑(∑𝑔𝑛−𝑘
𝑘⏟    
𝑔0+…+𝑔𝑛

)

𝑛𝑛, 𝑘

𝑧𝑛 

𝒈̂ =< 1,1, … > gives the GF (1 − 𝑧)−2 for the sequence < 1,2,3, … >. 

Sequence GF Closed form 

< 1,𝑚, (
𝑚
2
) , . . , (

𝑚
𝑚
) , 0… > ∑ (

𝑚
𝑛
)𝑧𝑛𝑛≥0   (1 + 𝑧)𝑚 

< 1, 𝑐, 𝑐2, 𝑐3, … > ∑ 𝑐𝑛𝑧𝑛𝑛≥0   1/(1 − 𝑐𝑧) 

< 0, 1,
1

2
,
1

3
, . . . > ∑

1

𝑛
𝑧𝑛𝑛≥0   ln

1

1 − 𝑧
 

< 1, 1,
1

2
,
1

3!
,
1

4!
, … > ∑

1

𝑛!
𝑧𝑛𝑛≥0   𝑒𝑧 

 

Derivation and integration is another way to get a GF. 

𝒇̂ = 1 + 𝑧 + 𝑧2 +⋯ GF: (1 − 𝑧)−1 

𝐷𝒇̂ = 1 + 2𝑧 + 3𝑧2 +⋯ GF: 𝐹(𝑧) = 𝐷(1 − 𝑧)−1 = (1 − 𝑧)−2 

𝒈̂ = 1 + 𝑧 + 𝑧2/2! + 𝑧3/3!… GF: 𝐺(𝑧) 
𝐷𝒈̂ = 1 + 𝑧 + 𝑧2/2! + ⋯ GF: 𝐷𝐺(𝑧) = 𝐺(𝑧) → 𝐺(𝑧) = 𝑒𝑧 

𝒉̂ = 𝑧 + 2−1𝑧2 + 3−1𝑧3 +⋯ 𝒉̂ = 〈0,1,2−1, 3−1, … 〉 

𝒉̂ = ∫ (1 + 𝑡 + 𝑡2… )𝑑𝑡
𝑧
0   GF: 𝐻(𝑧) = ∫ (1 − 𝑡)−1𝑑𝑡 = ln

𝑧
0 (1 − 𝑧)−1
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Theorem 4.  Partial fraction decomposition 

Let 𝑓 and 𝑔 be nonzero poynomials over a field 𝔽 with 𝑔 = ∏ 𝑝𝑖
𝑛𝑖𝑘

𝑖=1 , 

a product of powers of distinct irreducible polynomials. 

There are unique polynomials 𝑞 and 𝑟𝑖𝑗  with deg 𝑟𝑖𝑗 < deg 𝑝𝑖 s.t. 

𝑓

𝑔
= 𝑞 + ∑ ∑

𝑟𝑖𝑗

𝑝𝑖
𝑗

𝑛𝑖

𝑗 = 1

𝑘

𝑖 = 1

     deg 𝑓 < deg 𝑔 ⇒ 𝑞 = 0 

 

To go from GF to a sequence of numbers, use the Maclaurin series. 

𝐹(𝑧) = ∑
𝐹(𝑛)(0)

𝑛!⏟    
𝑓𝑛

𝑧𝑛
∞

𝑛 = 0

 

(1 + 𝑥)𝛼 = ∑ (
𝛼
𝑘
) 𝑥𝑘

∞

𝑘 = 0

  𝛼 ∈ ℝ  with (
𝛼
𝑘
) ≡

𝛼(𝛼 − 1)… (𝛼 − 𝑘 + 1)

𝑘!
  

When α ∈ ℤ−   (
−𝑛
𝑘
) = (−1)𝑘 (

𝑛 + 𝑘 − 1
𝑘

) →
1

(1 + 𝑥)
= ∑ (−𝑥)𝑘

∞

𝑘 = 0

 

Another way to get from GF to numbers is by partial decomposition of a 

rational function. Let’s look at the Fibonacci sequence 〈0,1,1,2,3,5,8, … 〉: 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 + [𝑛 = 1]  ( 𝐹𝑛 = 0 for 𝑛 < 0 ) → 

𝐺(𝑧) =∑ 𝐹𝑛𝑧
𝑛 =∑ 𝐹𝑛−1𝑧

𝑛 +∑ 𝐹𝑛−2𝑧
𝑛 +∑ [𝑛 = 1]𝑧𝑛

𝑛𝑛𝑛𝑛

= 𝑧𝐺(𝑧) + 𝑧2𝐺(𝑧) + 𝑧  →   𝐺(𝑧) =
𝑧

1 − 𝑧 − 𝑧2

 

The Fibonnacci numbers 𝐹𝑛 = [𝑧
𝑛]

𝑧

1−𝑧−𝑧2
, can be retrieved by a partial 

fraction decomposition of 𝑅(𝑧) = 𝑃(𝑧)/𝑄(𝑧) with 𝑄(𝑧) = 1 − 𝑧 − 𝑧2 and 

𝑃(𝑧) = 𝑧. Partial fraction decomposition with quotient and remainder 

polynomials will be described in the algebra section but since 𝑄(𝑧) is a 

polynomial over ℂ its irreducible polynomials will be of degree one. 

 

 

 

 

 

 

 

 

 

 

 

𝑅(𝑧) =
𝛼1

𝑧−𝜌1
+

𝛼2

𝑧−𝜌2
=

−𝛼1/𝜌1

1−𝑧 𝜌1⁄
+
−𝛼2/𝜌2

1−𝑧 𝜌2⁄
→ 〈𝑓𝑛〉 = −

𝛼1

𝜌1
〈𝜌1
−𝑛〉 −

𝛼2

𝜌2
〈𝜌2
−𝑛〉 

𝑅(𝑧) =
𝑧

1 − 𝑧 − 𝑧2
→  𝐹𝑛 =

𝜑𝑛 − 𝜑̂𝑛

√5
   with (

𝜑 = (1 + √5) 2⁄

𝜑̂ = (1 − √5) 2⁄
) 

A few more examples on generating fuctions are presented in appendix C. 
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3.4.5 Graph theory 

Graph theory deals with a well-defined class of formalized diagrams that 

capture the essential properties of issues that occur in many fields of science, 

not least computer science and algorithms. Some examples: 

• Tree structures for sorting and searching. 

• Networks for all types of infrastructure, such as IT/information and 

transport. A typical problem here is the travelling salesman problem of 

how to find the shortest path that passes given cities. 

• Geometry, topology and knot theory. 

• The four color problem, a classical example of a problem involving 

various ways of coloring graphs. Is four colors enough to color a map?  

 

 

 

 

 

Definitions 

An undirected graph 𝐺 = (𝑉, 𝐸) is a set of vertices (nodes) 

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} ≠ ∅ and a set of  edges 𝐸 = {{𝑥, 𝑦}|𝑥, 𝑦 ∈ 𝑉 … }. 

An edge connecting 𝑎 with 𝑏 is denoted 𝑎𝑏, loops with 𝑎 = 𝑏 are allowed. 

A graph with several edges between two vertices is called a multigraph. 

A simple graph has no multiple edges or loops. 

The complete graph, 𝐾𝑛 is a simple graph that connects all 𝑛 nodes. 

A directed graph 𝐺 = (𝑉, 𝐸) has directed edges 𝐸 = {(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝑉 … }. 

Edge 𝑒 = {𝑎, 𝑏} is incident with nodes 𝑎 and 𝑏 that are adjacent. 

The order of a graph is the number of vertices, |𝑉|. 

The size of a graph is the number of edges, |𝐸|. 

The degree of a vertex, deg(𝑣) is the number of edges incident with the 

vertex with loops counted twice. 

If every vertex has the same degree then it is a regular graph. 

If the degre of each vertex is 𝑘 then it is a 𝒌-regular graph. 

A path of length 𝑛 from 𝑎 to 𝑏 in the graph 𝐺 = (𝑉, 𝐸) is a sequence 

𝑎 = 𝑎1, 𝑒1, 𝑎2, … , 𝑒𝑛, 𝑎𝑛 = 𝑏 s.t. 𝑎𝑖 ∈ 𝑉 and 𝑒𝑖 ∈ 𝐸. (or 𝑎1…𝑎𝑛 or 𝑒1…𝑒𝑛) 

A simple path passes each of its vertices only once. 

The distance between nodes is the length of the shortest connecting path. 

In a connected graph every pair of vertices is connected by a path. 

A path starting and ending in the same vertex is a cycle. 

A tree is a connected graph with no cycles, a forest is composed of trees. 

A planar graph can be drawn in a plane with no edges crossing each other.
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These were just some of the many definitions used in graph theory. As is 

usual among mathematical structures there can be subgraphs and iso-

morphisms. 𝐺′ = (𝑉′, 𝐸′) is a subgraph of 𝐺 = (𝑉, 𝐸) if 𝑉′ ≠ ∅, 𝑉′ ⊆ 𝑉 and 

𝐺′ ⊆ 𝐺. Two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are essentially the same 

or isomorphic if there is a bijection 𝑓: 𝑉1 → 𝑉2 s.t. if 𝑎, 𝑏 ∈ 𝑉1 then {𝑎, 𝑏} ∈

𝐸1 ⇔ {𝑓(𝑎), 𝑓(𝑏)} ∈ 𝐸2. 

The degree sequence of an undirected graph is the non-increasing list of its 

vertex degrees. It can be used to tell non-isomorphic graphs apart. A theorem 

from graph theory that is easy to prove and with a corollary about the number 

of people that shakes hand with an odd number of people is the following. 

Theorem 5. (Degree Sum Formula) 

If 𝐺 = (𝑉, 𝐸) is a graph or multigraph then ∑ deg(𝑣𝑖)𝑣𝑖∈𝑉
= 2|𝐸|. 

Corollary. (Handshaking Lemma) 

The number number of nodes of odd degree in a graph is even. 

Graphs can be represented on a computer with lists or matrices. Matrices 

have fast access but they can be too memory expensive for big and sparse 

graphs. There are two ways to represent graphs with matrices. Let 𝐺 = (𝑉, 𝐸) 

be an undirected graph with indexed vertices and edges. The incidence 

matrix of 𝐺 is a 𝑣 × 𝑒 matrix 𝐀 = (𝑎𝑖𝑗) defined by: 

𝑎𝑖𝑗 = {
1 if 𝑣𝑖  is incident with edge 𝑒𝑗 .              Rows represent vertices  

0 if 𝑣𝑖  is not connected with edge 𝑒𝑗.   Columns represent edges 
 

Two graphs are isomorphic if and only if one of their incidence matrices is 

obtained from the other by permuting rows and columns. 

In the second representation both rows and columns are indexed by the 

vertices. The adjacency matrix of a directed or undirected graph is a square 

𝑣 × 𝑣 matrix 𝑩 = (𝑏𝑖𝑗) defined by: 

𝑏𝑖𝑗 = The number of nodes from vertex 𝑖 to vertex 𝑗, 

 loops counts as two, one for each direction. 

Theorem 6. 𝑩 is a symmetric matrix if the graph is undirected and (𝑩𝑝)𝑖𝑗  is 

the number of paths from vertex 𝑖 to vertex 𝑗 of length 𝑝. 

Proof. Follows from induction over 𝑝 and (𝑩𝑝)𝑖𝑗 = ∑ (𝑩𝑝−1)𝑖𝑘
𝑣
𝑘=1 (𝑩)𝑘𝑗. 
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Definitions 

An Euler cycle in a graph is a cycle that passes each edge exactly once. 

A graph (or multigraph) that contains an Euler cycle is an Euler graph. 

A path that passes each edge of a graph exactly once is an Euler path. 

Replace edge with node  to define a Hamilton cycle, graph and path. 

Theorem 7. (Euler-Hierholzer) 

A connected graph or multigraph has an Euler cycle ⇔ 

Every node is of even degree. 

Leonhard Euler (1707–1783) proved it in the easier ⇒ direction and Carl 

Hierholzer (1840–1871) proved it in the opposite direction. It is not that hard 

to prove and I leave it as an exercise to the reader. 

Corollary. A connected graph or multigraph 𝐺 has an Euler path ⇔ 

The number of nodes of odd degree is at most two. 

Proof. Assume the RHS of the biconditional. If the number of odd nodes is 

zero then there is an Euler cycle by Theorem 7. Removing an edge from this 

cycle will make it into an Euler path. Otherwise the corollary of theorem 5 

implies that the number of odd nodes must be 2. Connect these two nodes 

with an edge and every node is even. By Theorem 7 there will be an Euler 

cycle. Remove the added edge and what remains is an Euler path. Assume the 

LHS of the biconditional, then only the start and end nodes of the path can 

have odd degree i.e. no more than two odd nodes. ∎ 

Graph theory started with Euler in 1736 when he wrote a paper on “the seven 

bridges of Königsberg”. The city was renamed Kaliningrad in 1946. Through 

the city of Königsberg flowed the river Pregel with two islands that were 

connected to each other and the mainland with seven bridges. Sunday walks 

was a common pastime and the question arose if it was possible to find a 

closed tour that passed each bridge exactly once. The citizens of Königsberg 

approached the famous mathematician Euler with their question. He solved it 

and showed the necessary criterion for an Euler cycle in the general case. 

 

 

Fig 3.4.4  Map of Königsberg and its multigraph with degree sequence (5,3,3,3). 

The multigraph has 7 edges and 4 nodes, all of odd degree. There can be no 

Euler cycle, not even an Euler path. To get an Euler path one bridge must be 

removed and to get an Euler cycle two bridges must be removed. 
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cyclical indices 

The next example from the 1930s has many applications of great importance. 

It involves Hamilton cycles in a weighted graph. Each edge is weighted with 

a numerical value that could represent time, cost, energy or something else. 

To find a path with the smallest waste of resources can be vital for resource 

management. 

The travelling salesman problem (TSP) has a set of cities corresponding to 

nodes. Each edge is weighted by the distance between its incident cities. The 

goal is to find the shortest round-trip that passes every city. In a complete 

graph 𝐾𝑛 with symmetric weights there is (𝑛 − 1)!/2 cycles to compare. TSP 

is relevant for telescope movement, microchip design, DNA-sequencing and 

many other problems. One way to formalize the problem is: 

𝑑𝑖𝑘 = Distance between city 𝑖 and 𝑘 

𝑥𝑖𝑗 = [City 𝑖 is in position 𝑗]    (𝑥𝑖𝑗 ∈ {0,1}) 

Minimize ∑ 𝑑𝑖𝑘𝑥𝑖𝑗(𝑥𝑘,𝑖−1 + 𝑥𝑘,𝑖+1)

1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛

 

Under the constraints that 

each city and each position is used once. 

∑ 𝑥𝑖𝑗 = 1   ∑ 𝑥𝑖𝑗 = 1
𝑛

𝑗=1

𝑛

𝑖=1
 

 

 

 

 

 

 

Computational complexity theory classifies algorithms according to how time 

and memory to solve a problem grows with the size of the input. The Held-

Karp algorithm makes use of the fact that minimal distance is preserved by 

subpaths. Its space complexity is 𝑂(2𝑛𝑛) and its time complexity is 𝑂(2𝑛𝑛2) 

which is much better than the time 𝑂(𝑛!) needed to consider all cycles. The 

big O notation for growth rate is explained in a section on analysis. No 

algorithm for solving TSP faster than 𝑂(2𝑛) is known. Questions concerning 

Complexity classes and polynomial versus non-polynomial problems deserve 

a section of their own in a later chapter devoted to computer science. With 

too many cities, heuristic or approximate algorithms that can retrieve good 

enough suboptimal solutions are necessary. 

TSP 
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The greedy algorithm. Start somewhere and always go to nearest unvisited 

city. It is quick. For a random distribution its average is no worse than 25% 

longer than the optimal solution, but it can also go terribly wrong. 

Ant colony optimization algorithm. It is based on how ants move between 

food sources and nest. Trail pheromones, scouting ants and emergent paths 

based on individual ant behavior translates to an algorithm that finds good 

solutions and avoid bad ones. 

Evolutionary algorithm. This is a method based on concepts from natural 

evolution: inheritance, mutation, mating, selection and a fitness function to 

determine the quality of a solution. Set a population size 𝑃 and a number of 

generations 𝐺 to evolve a solution. Generate 𝑃 random solutions and for each 

new generation keep the best 0.1𝑃 solutions, select 0.01𝑃 solutions randomly 

and mutate them and create 0.89𝑃 new solutions by a mating procedure. 

Simulated annealing. This is a general method to search for a global 

optimum of a function without getting stuck in a local optimum. It derives 

from thermodynamics and how random fluctuations among physical states 

depend on temperature. The method goes from state to state with temperature 

deciding the probability of accepting a new solution. 

It starts from a high temperature with much fluctuation up and down in 

energy to scope out the big picture and then gradually cools down. At 𝑇 = 0 

only downhill transitions are allowed until finally it lands in a local optimum. 

At high 𝑇 evolution is sensitive to coarser energy variations and at smaller 𝑇 

it probes finer details in the energy landscape. 

The probability of transition from state 𝑆 to 𝑆′ is decided by the acceptance 

probability 𝑃(𝐸, 𝐸′, 𝑇) where 𝐸 = 𝑒(𝑆) and 𝐸′ = 𝑒(𝑆′) are state energies. 

For TSP it amounts to the total length of a cycle. A common choice modelled 

on transitions in physical systems is: 

𝑃(𝐸, 𝐸′, 𝑇) = [𝐸′ ≤ 𝐸] ⋅ 1 + [𝐸′ > 𝐸] ⋅ 𝑒−(𝐸
′−𝐸) 𝑇⁄  

It is named after Metropolis and Hastings. Others with credit for its discovery 

are Marshall Rosenbluth, Edward Teller, Enrico Fermi and Stanisław Ulam. 

 

 

 

 

Fig 3.4.5  Local optimum search and Metropolis transition probabilities.
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𝜔𝑗𝑖  𝜔′𝑘𝑗  

𝑦 = 𝑓(𝑥̅, 𝝎,𝝎′, 𝝎′′) 

𝑥𝑖 

𝑥0 

𝑥1 

𝑥2 

𝑥𝑚 

optional bias unit with 𝑥0 = 1 

𝜔𝑗0 = 𝑏𝑗  

𝜔𝑗1 

𝜔𝑗2 

𝜔𝑗𝑚 
𝑥ሶ𝑗 = 𝜑൭∑𝜔𝑗𝑖𝑥𝑖

𝑚

𝑖=0

൱ 

neuron #𝑗 

𝑥ሶ𝑗  

𝑥ሷ𝑘  

𝜔′′𝑙𝑘  

Artificial neural networks (ANN). This is a large class of models suitable 

for various tasks such as classification; like telling images of dogs and cats 

apart as was done in a kaggle competition or recognizing faces; pattern 

recognition for speech and handwriting; combinatorial optimization like TSP 

or general AI tasks such as being a master GO player. As the title of this book 

suggests I will allow myself to make digressions and wander about in the 

mathematical landscape. It’s time for a detour to look at neural networks. 

The basic function of a neuron in the neural network of the brain is to sum up 

incoming signals and if above a certain threshold pass a signal on to other 

parts of the network via synaptic connections. A real brain has 1011 neurons 

and 1014 synapses that work in parallel. This is the historic inspiration behind 

ANNs that have a limited set of nodes arranged in an architecture with  

hidden layers sandwiched between input nodes and output node(s). Deep 

learning networks can have up to 30 layers where layers extract properties 

based on abstractions derived from earlier layers. Between nodes are links 

with weights that are updated in an adaptive process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4.6  Neuron, network, multilayer perceptron and transfer functions. 

The transfer function 𝜑(⋅) can be a step function, a linear function or a 

smooth function like tanh (𝑥) or (1 + 𝑒−𝑥)−1, with or without its own bias, 

(horizontal displacement). Fig. 3.12 pictures a feedforward neural network 

that can be used to classify points 𝑥̅ into classes coded by the value of 𝑦, 

often 0 or 1 with 𝜑(⋅) being the corresponding step function. Information of 
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how to classify points is stored in the weights 𝜔𝑗𝑖 , 𝜔𝑘𝑗
′ , …. The weights 

areassigned by a training process on a sample of classified points (𝑥̅𝑠, 𝑑𝑠). 

With-out going into the details, this could be done by assigning random 

values to 𝝎 and 𝝎′ for a first iteration 𝑡 = 1 and then calculate 𝑦𝑡 =

𝑓(𝑥̅𝑡 , 𝝎𝑡 , 𝝎′𝑡) and adapt the weights into 𝝎𝑡+1 and 𝝎′𝑡+1 to minimize a given 

error function (∑ |𝑑(𝑠) − 𝑦(𝑠)|2𝑡
𝑠=1 )/𝑡. Repeat the process until you get a 

reasonable error. This procedure is called supervised learning. Too small an 

error and the network might be over-trained for the intended task of 

classifying unclassified data. This happens if the boundary is to ‘wiggly’ in 

its demarcation of territories. 

The first ANNs were constructed in the 1950s. They were single-layered 

perceptrons (SLP) with no hidden layers. It was soon realized that they 

could only learn linearly separable patterns where a hyperplane divides the 

sample space into two areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4.7 SLP for c/m/d, MLP for XOR and non-linear separation of x/o. 

Hidden layers necessary for non-linear classifiers are used in multilayered 

perceptrons (MLP) with smooth transition functions for derivation. Weights 

are updated by gradient descent to minimize errors in the output nodes for all 

training points (or one point at a time). 
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′′ = −𝜂

𝜕𝐸

𝜕𝜔𝑎𝑏
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𝜕𝜔𝑎𝑏
′ etc.

 

 

 

𝜔𝑡  𝜔𝑡+1 

∆𝜔 

Error 

𝜔 
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𝑆1 
𝑆2 

𝑆3 

𝑆4 

𝑆5 

𝑆6 
𝑆7 

𝑆8 

𝑆9 

𝑆10 

𝑆11 

𝑆12 

𝜔 > 0 𝜔 < 0 

Output is calculated in forward passes through the layers whereas corrections 

start with the last layer. The result is then used for calculating corrections in 

the second last layer etc. in a backward propagation of errors. The procedure 

is repeated until all weights hopefully settle down in a local error-minimum. 

Perceptrons with supervised learning are not of much use for the travelling 

salesman problem. For that you can use a Hopfield network, a type of net-

work that was analyzed by John Hopfield in an influential paper from 1982. 

Hopfield networks can also be used as content-addressable memory, some-

what similar to our associative memory that can retrieve memories from 

partial information and which lets us recollect things we have forgotten by 

activating memories associated with what we try to remember. 

A Hopfield net is a fully connected graph 𝐾𝑁 

where each node 𝑆𝑖 is a binary threshold unit 

(usually 𝑆𝑖 = 1 or −1) with restrictions on 

weights and the following updating rule: 

• 𝜔𝑖𝑖 = 0, no self-interaction 

• 𝜔𝑖𝑗 = 𝜔𝑗𝑖 , symmetric interaction strengths 

• 𝑆𝑖 ← sgn(∑ 𝜔𝑖𝑗𝑆𝑗 − 𝜃𝑖𝑗 )  ( threshold 𝜃𝑖  )   

 ( sgn(𝑥) = 𝑥/|𝑥| ) 

Updates can be performed either one unit at a time in a predefined or random 

order or all units at once. 𝜔𝑖𝑗 > 0 leads in the direction of 𝑆𝑖 and 𝑆𝑗 aligning 

their signs at updates whereas 𝜔𝑖𝑗 < 0 favors opposing signs. It all resembles 

how magnetic moments behave in materials with certain magnetic properties. 

• 𝜔 > 0 and declining with distance for 

ferromagnetic materials. 

 

• 𝜔 < 0 and declining with distance for 

antiferromagnetic materials. 
  

Just as a physical systems have potential energy so does a Hopfield net have a 

scalar value that behaves like the energy of the network state 𝑺 ∈ {−1,1}𝑁. 

This was one of Hopfield’s contributions in his paper on associative memory 

and neural networks in biology and computer models.  

𝐻 = −
1

2
∑𝜔𝑖𝑗𝑆𝑖𝑆𝑗 +∑𝜃𝑖𝑆𝑖

𝑖𝑖, 𝑗

    (∗) 
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Self-interaction terms 𝜔𝑖𝑖  can just as well be set to zero since they only 

contribute with a constant to the total energy (𝑆𝑖
2 = 1). Symmetric weights 

guarantee that the energy will always decrease or remain constant during 

updates. Local minima of 𝐸 will act as attractors during updating. Given a 

number of patterns 𝝃𝜇 ∈ {−1,1}𝑁, how do you set 𝜔𝑖𝑗  to make them into 

local minima and how many can you store? 

The pattern 𝝃 is stable (𝜃𝑖 = 0) if ∀𝑖: sgn(∑ 𝜔𝑖𝑗𝜉𝑗𝑗 ) = 𝜉𝑖 . This is true if 

𝜔𝑖𝑗 ∝ 𝜉𝑖𝜉𝑗. The Hebb rule for storing 𝑀 patterns 𝝃𝜇, 𝜇 = 1,2, … ,𝑀 is: 

                     𝜔𝑖𝑗 =
1

𝑁
( ∑ 𝜉𝑖

𝜇
𝜉𝑗
𝜇

𝑀

𝜇 = 1

)   (∗∗) 

More patterns will reduce the basins of attractions 

and introduce more unintended minima≠ 𝝃𝜇. The 

capacity is 0.14𝑁 if we accept a small percentage 

of errors in each pattern. If we insist that most 

patterns should be recalled without errors then the 

limit is proportional to 𝑁/ log𝑁. 

The Hebb rule can be derived through the energy function. The energy should 

be minimal when the network state 𝑺 has maximal overlap with the patterns 

to store 𝝃𝜇. A good choice for this to happen is: 

𝐻 = −
1

2𝑁
∑ ( ∑ 𝑆𝑖𝜉𝑖

𝜇

𝑁

𝑖 = 1

)

2

⇒ 𝐸 = −
1

2
∑(

1

𝑁
∑ 𝜉𝑖

𝜇
𝜉𝑗
𝜇

𝑀

𝜇 = 1

)𝑆𝑖𝑆𝑗
𝑖, 𝑗

𝑀

𝜇 = 1

 

Comparison with(∗) gives the Hebb rule (∗∗) for weight assignment. This is 

a fruitful approach for many optimization problems. Write an energy function 

whose minimum satisfies the problem, expand it and identify coefficients of 

𝑆𝑖𝑆𝑗 as weights and linear terms as thresholds. Constraints are handled with 

penalty terms that are minimized when the constraints are satisfied. Applying 

this to the travelling salesman problem from page 117 gives: 

𝐻 =
1

2
∑ 𝑑𝑖𝑘𝑥𝑖𝑗(𝑥𝑘,𝑖−1 + 𝑥𝑘,𝑖+1)

𝑖, 𝑗, 𝑘

+
𝛾

2
[∑൭1−∑𝑥𝑖𝑗

𝑖

൱

2

𝑗

+∑(1 −∑𝑥𝑖𝑗
𝑗

)

2

𝑖

] 

The penalty coefficient 𝛾 is handled by experimentation to get the best result. 

Fig.  3.4.8  Image retrieval by a Hopfield net 
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𝐶𝑘 

𝑆𝑖 

𝑆𝑖+𝑛 

𝑆𝑖−𝑛 
∆𝜔 

You don’t want to get stuck in a local minimum. This can be handled with 

stochastic techniques like simulated annealing. Temperature treatment of 

Hopfield networks is a direct parallel to statistical mechanics of interacting 

particles with spin, also known as Ising models. More on this in appendix C. 

A variation on the TSP is the Euclidean TSP with cities in a (𝑥, 𝑦)-plane with 

Euclidean distances √∆𝑥2 + ∆𝑦2. This problem is suitable for a Kohonen 

self-organizational feature map (SOFM). Such a network looks like a simple-

layered perceptron with 𝑥 and 𝑦 nodes in one layer. The new feature of these 

ANNs is that nodes in the outgoing layer are ordered in a lattice of one or two 

dimensions that may or may not curl up. 

 

 

 

 

Fig. 3.4.9  ANN with SOFM for TSP. 

Trial cities 𝑆𝑖 with positions placed in their weights 𝜔̅𝑖 = (𝜔𝑖𝑥 , 𝜔𝑖𝑦) are put 

on an ‘elastic rubber band’. Their number 𝑁′ and weights will change while 

adapting to the 𝑁 real cities 𝐶𝑘, with positions 𝑣̅𝑘. The goal is 𝑁′ = 𝑁 and 

𝜔̅𝑛 → 𝑣̅𝑓(𝑛) for some permutation 𝑓, with minimal tour length ∑ |𝜔̅𝑖 − 𝜔̅𝑖+1|𝑖 . 

Go through the cities and for each 𝐶𝑘 choose 

the closest trial city 𝑆𝑖. Adapt the weights of 𝑆𝑖 

and its neighbors in the direction towards 𝐶𝑘, 

∆𝜔̅𝑗 ∝ 𝑒
−𝑛2/𝜎2(𝑣̅𝑘 − 𝜔̅𝑗). Adjustments shrink 

with increasing 𝑛 = ′neighbor-distance from 𝑖′, 

and with decreasing 𝜎. This number is lowered 

in steps to improve convergence and peak the 

neighborhood of changing weights around 𝑖. 

The update rule can be retrieved from an energy/error function of a Hopfield 

network. The error function contains a factor Λ𝑖𝑗 that declines with neighbor 

distance between nodes 𝑖 and 𝑗. 

 

𝐸 =
1

2
∑ ∑ Λ𝑖𝑗(𝑣̅𝑘 − 𝜔̅𝑗)

2𝑁′

𝑗=0

𝑁

𝑘=0
   (𝑖 is the 𝑆𝑗  node closest to 𝐶𝑘  ) 

𝑆0 𝑆1 

𝑥 

𝑆𝑁′−1 

𝑦 

Trial 

cities  

Fig. 3.16  Weight adjustments 
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If a trial city is the closest one to two different cities it will be duplicated and 

its clone will be inhibited from moving along with its originator. If a trial city 

fails to be the closest trial city of a real city for several complete surveys it 

will be deleted. 

Which algorithm to choose depends on the number of cities and the compu-

tational time allowed. For the Euclidean version the human mind has an 

impressive ability to intuitively spot improvements missed by advanced and 

time-consuming computations. One such improvement, easy to see and often 

missed by the presented algorithms is the removal of crossings in the path.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4.10  Removal of crossing and successful end result for 500 cities. 

The best programs for the TSP can handle millions of ‘cities’ to within 2-3 % 

of the optimal tour length. According to Wikipedia the optimal tour length 

for visiting all 24,978 ‘towns’ of Sweden has been found. It is 72,500 km. 

Algorithms for the Euclidean TSP are often tested with a random distribution 

of points in the unit square. It has been shown that with random variables 

(𝑋𝑖)1
𝑛 with uniform distribution in a bounded plane region of area 𝑣, the 

length of the optimal TSP solution is ‘almost always’ asymptotically pro-

portional to √𝑛𝑣. With 𝔼(𝐿𝑛) being the expected optimal tour length of 𝑛 

points in the unit square there is a well-defined limit of 𝔼(𝐿𝑛)/√𝑛 as 𝑛 → ∞: 

lim
𝑛→∞

𝔼(𝐿𝑛)

√𝑛
= 𝛽      

Best known bounds 0.63 < 𝛽 < 0.92 
Computer experiments give 𝛽 ≳ 0.71

Sweden: 450,295 km2 → 𝐿𝑛/√𝑛𝑣 = 0.68

 

After this detour into neural networks and the traveling salesman problem it’s 

time to return to graph theory. 
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If a graph 𝐺 = (𝑉, 𝐸) can be illustrated with a drawing on a plane without 

edges crossing outside vertices might not seem like an important property but 

planar graphs tells us something about polyhedrons and they are also the 

starting point of topology. 

  

 

 

 

 

 

 

 

Fig 3.4.11 Graph 𝐾7, 𝐾4, Complete bipartite graph 𝐾4,3 and stereographic projection. 

𝐾4 and 𝐾3,2 are planar but 𝐾5 and 𝐾3,3 are not. The last fact is the answer to  

the classical puzzle of connecting gas-, water- and electrical plant in Flatland 

to three houses. Every non-planar graph has at least one subgraph that is a 

subdivision of 𝐾5 or 𝐾3,3 (Kuratowski’s theorem). A subdivision is simply a 

series of extensions with extra vertices put on existing edges, {𝑎, 𝑏} ⊆ 𝑉 and 

{𝑎𝑏} ⊆ 𝐸 are replaced by {𝑎, 𝑏, 𝑥} ⊆ 𝑉 and {𝑎𝑥, 𝑥𝑏} ⊆ 𝐸. 

A non-crossing drawing of a connected planar graph divides the plane into 

faces that are bounded by edges of the graph. One face is of infinite extent, 

it’s called the outer face. When the drawing is projected onto a sphere via the 

stereographic projection the north pole will be somewhere in the outer face. 

No distinction exists on the sphere between the outer face and the other faces. 

The number of faces in a planar graph is denoted by 𝑓. 

Theorem 8. (Euler’s polyhedron formula) 

Let 𝐺 = (𝑉, 𝐸) be a connected planar graph, 𝑣 vertices, 𝑒 edges and 𝑓 faces. 

𝑣 − 𝑒 + 𝑓 = 2 

Proof. (By induction over the number of edges) 

For 𝑒 = 1 there are two possibilities that both gives 𝑣 − 𝑒 + 𝑓 = 2, 

one node with a loop, 𝑣 = 1 , 𝑒 = 1 , 𝑓 = 2 and 

two nodes and one edge, 𝑣 = 2 , 𝑒 = 1 , 𝑓 = 1. 

 

Assume the theorem is true for all graphs with 𝑘-1 edges. Let 𝐺 be a graph 

with 𝑣 vertices, 𝑘 edges and 𝑓 faces. There are two cases to consider:
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I. If 𝐺 has a vertex of degree 1, let 𝐻 be the subgraph obtained by removing 

this vertex and its edge. 𝐻 has 𝑣-1 vertices, 𝑘-1 edges and 𝑓 faces. 

By assumption the theorem is valid for 𝐻 ⇒ 𝑣 − 𝑘 + 𝑓 = 2. 

II. If there is no such vertex then there will be an edge that is part of a finite 

face. Remove this edge and the remaining graph has 𝑣 vertices, 𝑘-1 edges 

and 𝑓-1 faces. Using the theorem on this subgraph⇒ 𝑣 − 𝑘 + 𝑓 = 2. ∎ 

Fig. 3.4.12  Central projections of regular convex polyhedra (Schlegel diagrams). 

Convex polyhedrons are linked to planar graphs via projection from a point 

onto a plane, hence the name polyhedron formula. Euler’s proof was based 

on vertices, edges and faces of convex polyhedra. Adding edges to triangulate 

polygonal faces and deforming a polyhedron away from convexity does not 

change the value of 𝑣 − 𝑒 + 𝑓. It applies to all polyhedra with a boundary in 

the shape of a sphere. 

Definition. A cycle of a graph 𝐺 = (𝑉, 𝐸) is a set of 𝑘 ≥ 3 different vertices 

such that 𝑎1𝑎2…𝑎𝑘𝑎1 is a path in the graph. 

Corollary 1. Every loop-free planar connected graph with one or more cycles, 

all of length at least 𝑘 has 𝑒(𝑘 − 2) ≤ 𝑘(𝑣 − 2). 

Proof. Every face is bounded by at least 𝑘 edges and each of these is the 

boundary between two faces so 2𝑒 ≥ 𝑘𝑓 ⇔ 𝑓 ≤ 2𝑒/𝑘 which with Euler’s 

formula gives 𝑣 − 𝑒 + 2𝑒/𝑘 ≥ 2 ⇔ (2 − 𝑣)𝑘 ≤ 𝑒(2 − 𝑘). ∎ 

Corollary 2. Every loop-free planar graph with 𝑣 > 3 has 𝑒 ≤ 3𝑣 − 6. 

Proof. If the graph is connected and contains a cycle it follows from Cor.1 

with 𝑘 = 3. Larger 𝑘 only strengthens the inequality. If there are no cycles, a 

cycle can be formed by adding edges 𝑒 + 𝑛 ≤ 3𝑣 − 6 ⇒ 𝑒 ≤ 3𝑣 − 6. If the 

graph is not connected it can be connected by adding edges. ∎ 

Now it’s easy to show that 𝐾5 and 𝐾3,3 are non-planar graphs. 

 

𝐾5 has 𝑣 = 5 and 𝑒 = 10, in clear violation of corollary 2 for planar graphs.  

 

If 𝐾3,3 were planar then any face would have at least 4 edges. 𝑘 = 4, 𝑣 = 6 

and 𝑒 = 9 violates corollary 1 so 𝐾3,3 must be a non-planar graph. 
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Theorem 9. There can be no more than five regular convex polyhedra. 

Proof. A regular convex polyhedron has 𝑣 vertices where 𝑛 ≥ 3 faces meet, 

𝑒 edges and 𝑓 faces with 𝑚 ≥ 3 edges. 

2𝑒 = 𝑚𝑓 = 𝑛𝑣 

By stereographic projection into a planar graph we get. (convexity needed) 

2 = 𝑣 − 𝑒 + 𝑓 =
2𝑒

𝑛
− 𝑒 +

2𝑒

𝑚
= 𝑒 (

2𝑚 −𝑚𝑛 + 2𝑛

𝑚𝑛
) 

2𝑚 −𝑚𝑛 + 2𝑛 > 0 ⇒ (𝑚 − 2)(𝑛 − 2) < 4 

(𝑚 − 2) ∈ ℤ+ and (𝑛 − 2) ∈ ℤ+ gives five possibilites: 

1. 𝑚 = 3 , 𝑛 = 3  ⟹   𝑣 = 4 , 𝑒 = 6 , 𝑓 = 4 Tetrahedron 

2. 𝑚 = 4 , 𝑛 = 3  ⟹   𝑣 = 8 , 𝑒 = 12 , 𝑓 = 6 Cube 

3. 𝑚 = 3 , 𝑛 = 4  ⟹   𝑣 = 6 , 𝑒 = 12 , 𝑓 = 8 Octahedron 

4. 𝑚 = 5 , 𝑛 = 3  ⟹   𝑣 = 20 , 𝑒 = 30 , 𝑓 = 12 Dodecahedron 

5. 𝑚 = 3 , 𝑛 = 5  ⟹   𝑣 = 12 , 𝑒 = 30 , 𝑓 = 20 Icosahedron ∎ 

The tetrahedron, cube and octahedron are obviously constructible. It’s less 

obvious that the dodecahedron and icosahedron exist but they do. These are 

the five platonic solids. 

 

 

 

 

 

For polyhedrons with a boundary that can’t be deformed into a sphere: 

𝑣 − 𝑒 + 𝑓 = 𝜒 

𝜒 is the Euler characteristic, a topological invariant that describes a shape and 

stays the same during continuous deformation. A closed orientable surface 

has 𝜒 = 2 − 2𝑔 where 𝑔 is the genus of the surface, the number of closed 

curves that can be cut without disconnecting the surface into separate pieces.

𝑣 − 𝑒 + 𝑓 = 0 
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Leonhard Euler (1707-1783) 

Euler is one of the greatest mathematicians in 

history and the most prolific. His collected 

works contains over 25,000 pages. There was 

often a long period from idea to publication and 

much of his work was published after his death. 

It has been said that in order to avoid naming 

everything after Euler things should instead be 

named after the first person after Euler who 

discovered them. He was active in all fields of mathematics as well as 

physics, astronomy and engineering. Laplace known for his unwillingness 

to give credits to others said: Read Euler, for he is the master of us all. 

Euler’s life divides naturally into four periods based on where he lived. 

 

1. Basel 1707-1727 
Leonhard grew up and studied in Basel. His father was a Calvinist pastor 

and his mother was a pastor’s daughter. He was set on a path to become a 

pastor and began studies at the University of Basel when he was thirteen, 

a common age those days for enrollment in higher studies. He wrote a 

dissertation that compared the philosophies of Descartes and Newton 

before specializing in theology with subjects such as Greek and Hebrew. 

Another family in Basel was the Bernoullis. Johann Bernoulli was one of 

the best mathematicians of his time. He was a friend of the Euler family 

and helped Leonhard in his private math studies on Saturday afternoons. 

He recognized Leonhard’s great talent and persuaded his reluctant father 

that he should switch from theology to mathematics so he could fulfill his 

destiny and become a great mathematician. 

When he was nineteen years old in 1727, Euler submitted an entry on how 

to arrange masts on a ship for the Grand Prize of the Paris Academy. This 

was a prestigious and annual competition to solve a selected problem. 

Euler finished as number two. He returned and shared first prize in 1738 

and 1740. It earned him great prestige and respect as a master of his field. 

2. Saint Petersburg 1727-1741 
Johan Bernoulli had three sons, all mathematicians. Daniel and Nicolaus 

worked for the Academy in St Petersburg. The city had been founded by 

Peter the Great in 1703 and the academy was his effort to open Russia to 

outside influence and close the gap in science with Western Europe. 

Nicolaus died in 1726 and Daniel took his position in the mathematics 

department which left Daniel’s post in physiology vacant. Daniel 

recommended his friend Euler for the job. Euler had an exceptional
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memory and had no problem educating himself for a medical position. 

Euler immediately moved on to work with physics and mathematics in 

close collaboration with his friend Daniel Bernoulli but he did not leave 

medicine completely. He took on an extra job as a medic in the navy. 

The groundwork for the academy had been laid by Leibniz and Peter I 

who died two years before Euler came to Russia. The plans were carried 

through by Catherine I, the widow of Peter I. Catherine died the same 

year that Euler arrived. Many in the Russian nobility viewed the Academy 

with suspicious eyes, a luxury dominated by foreign scientists. Contrary 

to most other members of the Academy, Euler quickly learned and 

mastered Russian. Daniel eventually grew tired of conflicts and returned 

to Switzerland. Euler became head of the mathematics department, settled 

down and got married in 1734 to Katharina Gsell, daughter of a Swiss 

painter. They had thirteen children but only five survived childhood. 

Russia was in turmoil after the death of Tsarina Anna Ivanovna. Euler 

was looking for a way out. After having won the Grand Prize of the Paris 

Academy he had got an invitation from Frederick the Great of Prussia to 

come to Berlin and establish an Academy of Sciences there. In 1741 he 

took his family from Saint Petersburg to Berlin. 

3. Berlin 1741-1766 
In Berlin he wrote several major works of great influence but in terms of 

readers nothing could match “Letters to a German princess, on different 

subjects in physics and philosophy”. It was a compilation of his mail 

correspondence with Frederick’s niece Friederike Charlotte Leopoldine 

Louise of Brandenburg-Schwedt, also known as the Princess of Prussia. 

Euler was a modest and devout religious man, in many ways the opposite 

of the spirit of the French enlightenment and personalities like Frederick 

and Voltaire, a witty and satirical master of argumentation and a popular 

guest at Frederick’s court. One story says that Euler was reproached by 

the Queen Mother for not conversing. His reply was, “Madame, I come 

from a country where if you speak, you are hanged”. She was not amused 

and relations with Frederick were not improved by disputes over who 

should lead the Academy. 

The Seven Years’ War (1756-1763) was raging in Europe. Euler’s home 

outside Berlin was ransacked by Russian troops. He received a generous 

compensation for this by Empress Elisabeth of Russia. Russia stabilized 

under the reign of Catherine the Great and she invited Euler to come back 

to the Academy in Saint Petersburg. 
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4. Saint Petersburg 1766-1783 
Euler was offered very good conditions in Russia and in 1766 he accepted 

the invitation to return to the Academy. He was as productive as ever and 

spent the rest of his life in Russia but not without tragedies. 

Euler had eye problems for most of his life. He had a severe fever in 1735 

which might be related to his almost complete loss of sight on the right 

eye. The bad eye can be seen on the picture from 1753 on the stamp. A 

cataract appeared in his left eye while in Berlin, it got worse and after an 

operation in 1771 that led to an abscess he had virtually no sight left. The 

same year he was very lucky to be saved from his burning home by his 

workman from Basel. Two years later he lost his wife Katharina. In spite 

of all the misfortunes he carried on with his work without slowing down. 

His comment to being blind was: “now I will have less distraction”.  

In the words of François Arago a French scientist “He calculated without 

any apparent effort, just as men breathe, as eagles sustain themselves in 

the air”. On his last day, he taught one of his grandchildren some math, 

calculated the motion of balloons on his big slate (the Montgolfier 

brothers had just done their first balloon flight), discussed the orbit of the 

newly discovered planet Uranus with a colleague and in the afternoon 

while playing with the grandchild he suffered a stroke. Marquis de 

Condorcet wrote in his eulogy for the French Academy “… suddenly, the 

pipe, which he held in his hand, dropped from it, and he ceased to 

calculate and to live”. Euler’s final resting place can be seen in the 

Alexander Nevsky Monastery in Saint Petersburg. 

Major works 
1727, Dissertatio physica de sono: Submitted in support of his application to the physics 
 chair at the University of Basel. (He did not get the job, went to St Petersburg instead) 

1736, Mechanica: Comprehensive treatment of mechanics including mechanics of flexible 

 and elastic bodies, fluid mechanics, celestial mechanics. First systematic use of 
 differential and integral calculus to mechanics (analytical mechanics). 

1739, Tentamen novae theoriae musicae: Physical nature of sound, pleasure and physiology 

 of audio perception, generation of sound by string and wind instruments. 
1744, Methodus inveniendi lineas curvas maximi…: Creates a new branch of mathematics, 

 ‘calculus of variation’ and derives the Euler-Lagrange equation. 

1748, Introductio in analysin infinitorum: Develops the concept of a function, introduces 
 real and complex functions, infinite series and products, continued fractions and 

 partitions, uses the fundamental theorem of algebra but without proof. 

1749, Scientia navalis: Naval science, hydrostatics, equilibrium and oscillations about 

 equilibrium of bodies submerged in water. 

1753, Theoria motus lunae: Euler’s first lunar theory, provided astronomers with formulae 

 needed to prepare lunar tables that served navigation for over a century. 
1755, Institutiones calculi differentialis…: Textbook on calculus with power series and 

 summation formulae, contains the first example of a Fourier series. 
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1765, Theoria motus corporum solidorum…: ”Second Mechanics”, motion of rigid bodies, 
 two coordinate systems, Euler angles and motion of spinning tops. 

1768-1770, Institutionum calculi integralis…(3 volumes): Textbook on calculus with 

 indefinite integration, differential equations, linear 2nd order diff. eq., and linear PDE. 
1768,1772, Lettres a une princesse d'Allemagne sur divers sujets…: Written in 1760-1762, 

 contains Euler’s views on physics, science, philosophy, ethics and religion. 

1769-1771, Dioptricae (3 volumes): Optical instruments. 
1770, Vollständige Anleitung zur Algebra: Comprehensive introduction to algebra. 

1772, Theoria motuum lunae: Second lunar theory, deals with the three-body problem for 

 the sun-earth-moon system. 
1776, Nova methodus motum corporum rigidorum determinandi:  

 Seminal work on mechanics with formulations of linear and angular momentum. 
1911-, Opera omnia: Complete works of Euler, fills 74 volumes and 16 more are planned. 

Euler’s works have a chronological index made by G. Eneström stretching from E1 to E866. 

Achievements 
1727 Euler’s number 𝑒 ≡ lim

𝑛→∞
(1 + 1/𝑛)𝑛=2.71828… The constant was discovered 

  by Jakob Bernoulli but Euler chose the symbol 𝑒 for it. 

1729 Euler’s integral of the first kind 𝐵(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡
1

0
  ( Beta function )

  and of the 2nd kind Γ(𝑡) = ∫ 𝑥𝑡−1𝑒−𝑥𝑑𝑥
∞

0
  ( Gamma function Γ(𝑛) = (𝑛 − 1)! ) 

1730 Improved on earlier work on infinite series.  
1734 Modern notion of a mathematical function with notation 𝑓(𝑥). 
1735 Solved the Basel problem ∑ 1/𝑘2∞

𝑘=1 = 𝜋2 6⁄   
1735 Euler’s constant 𝛾 ≡ lim

𝑛→∞
(1−1 + 2−1 +⋯+ 𝑛−1 − ln𝑛) = 0.57721 

  Euler showed its existence and calculated it to 16 decimal places. 
1735 Solved and generalized the bridge problem of Königsberg. The start of graph theory. 

  Eulerian path, a path that visits every edge exactly once. Euler tour technique for 

  traversing binary tress and Euler tour representation useful for parallel computation. 

1736 Proof of Fermat’s little theorem 𝑎𝑝 ≡ 𝑎 (mod 𝑝) with 𝑎 ∈ ℤ, 𝑝 ∈ 𝒫 

1736 Proved the Euler-Maclaurin formula connecting integrals and sums, 

            𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑛

𝑚

     𝑆 = 𝑓(𝑚 + 1) +⋯+ 𝑓(𝑛 − 1) + 𝑓(𝑛) 

            𝑆 − 𝐼 =∑
𝐵𝑘
𝑘!
(𝑓(𝑘−1)(𝑛) − 𝑓(𝑘−1)(𝑚)) + 𝑅  with  |𝑅| ≤

2𝜁(𝑝)

(2𝜋)𝑝
∫ |𝑓(𝑝)(𝑥)|𝑑𝑥
𝑛

𝑚

𝑝

𝑘=1

 

1737 Popularized 𝜋 as a symbol for the ratio of the circumference and diameter of a circle.  

1737 Used analytic methods for number theory and continued fractions. 

1737 Proved ∑ 1/𝑝𝑝∈𝒫  is divergent where 𝒫 = {2,3,5,7,11,13,… } is the set of primes. 

1737 Proof of Euler’s product formula 𝜁(𝑠) = ∏ (1 − 𝑝−𝑠)−1𝑝∈𝒫  

1739 Proves 𝜁(2𝑛) = 22𝑛−1|𝐵2𝑛|𝜋
2𝑛/(2𝑛)! for Riemann’s zeta function 𝜁(𝑠) ≡ ∑ 𝑛−𝑠∞

𝑘=1 . 

1740 Calculus of variation and Euler-Lagrange equations, 𝑞(𝑡) is a stationary point of the 

  functional 𝑆(𝑞) = ∫ 𝐿(𝑡, 𝒒(𝑡), 𝒒ሶ (𝑡))𝑑𝑡
𝑏

𝑎
  if   

𝜕𝐿

𝜕𝑞𝑖
(𝑡, 𝒒, 𝒒ሶ ) =

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞ሶ 𝑖
(𝑡, 𝒒, 𝒒ሶ ),  𝑖 = 1, . . , 𝑛 

1743 Euler’s formula 𝑒𝑖𝜑 = cos𝜑 + 𝑖 sin𝜑 (published 1748) 

1743 Euler’s identity 𝑒𝑖𝜋 + 1 = 0 

1744 First to use a Fourier series. (published 1755) 

1744 Euler spiral with curvature ∝ length, found its limit in 1781. Reinvented by Fresnel. 

1745 Studied hyperbolic trigonometric functions. 

1747 Proof of Fermat’s conjecture 𝑝 = 𝑥2 + 𝑦2, 𝑝 ∈ 𝒫\{2}  ∧ 𝑥, 𝑦 ∈ ℤ ⇔ 𝑝 ≡ 1 (mod 4) 
1747 Proved the Euclid-Euler theorem in both directions (Euclid proved ⇐ ) 

  𝑁 is a perfect number ⇔ 𝑁 = 2𝑛−1(2𝑛 − 1) with 𝑛 ∈ ℤ+ and 𝑀𝑛 = 2
𝑛 − 1 prime. 

  A perfect number equals the sum of its proper divisors 

  A Mersenne prime 𝑀𝑛 is a prime of the form 𝑀𝑛 = 2
𝑛 − 1 with 𝑛 ∈ ℤ+ 

1748 The four-square law (𝑎1
2 + 𝑎2

2 + 𝑎3
2 + 𝑎4

2)(𝑏1
2 + 𝑏2

2 + 𝑏3
2 + 𝑏4

2) = 𝑥2 + 𝑦2 + 𝑧2 + 𝑡2 
1748 Euler’s continued fraction formula for 𝑎0 + 𝑎0𝑎1 +⋯+ 𝑎0𝑎1…𝑎𝑛.
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1748 Euler’s criterion for determining if an integer is a quadratic residue modulo a prime. 

1748 Euler function 𝜙(𝑞) = ∏ (1 − 𝑞𝑘)∞
𝑘=1  for number theory and modular forms. 

1749 Euler polynomials 𝐸𝑛(𝑥) and Euler numbers, 𝐸𝑛 appear in the Taylor expansion  

  of 1 cosh 𝑡⁄  closely related to Bernoulli polynomials and Bernoulli numbers.  

1750 Euler’s polyhedron formula 𝑉 − 𝐸 + 𝐹=2, his proof contained a small gap. 

  Descartes had a similar formula in 1630. For other dimensions and shapes 2 ↷ 𝜒 

  The Euler characteristic 𝜒, topological invariant and precursor to algebraic topology. 

1750 Euler’s laws of motion for continuous bodies. 

  First law with linear momentum and external forces, 𝒑 = 𝑚𝒗𝑐𝑚 → 𝑭𝑡𝑜𝑡 = 𝑑𝒑 𝑑𝑡⁄   

  Second law with angular momentum and external moments,  𝑴𝑡𝑜𝑡 = 𝑑𝑳 𝑑𝑡⁄ . 

1750 Euler-Bernoulli beam theory for load and deflection characteristics of beams. 

1751 Extends definition of 𝑒𝑥 and ln 𝑥 to complex numbers. 

1752 Euler’s pump-turbine equations used for performance of engines and power plants. 

1755? The Euler transform ∑ (−1)𝑛𝑎𝑘 = ∑ (−1)𝑛∆𝑛𝑎0/2
𝑛+1∞

𝑘=0
∞
𝑘=0  to accelerate 

  convergence of alternating series. 

1755? Euler’s homogeneous function theorem 𝑓(𝜆𝒙) = 𝜆𝑟𝑓(𝒙) ⇔ 𝒙 ⋅ ∇𝑓(𝒙) = 𝑘𝑓(𝒙). 
1755 Introduced the Greek letter Σ for summation and ∆, ∆2, … for finite differences. 

1757 Critical buckling load of a column 𝐹 = (𝜋2𝐸𝐼)/(𝐾𝐿)2   𝐸, 𝐼, 𝐾, 𝐿 material constants. 

1757 Euler equations for fluid flow with zero viscosity: 
𝜕𝜌 𝜕𝑡 + ∇ ⋅ (𝜌𝒖) = 0⁄

                                    𝜕(𝜌𝒖) 𝜕𝑡 + ∇ ⋅ (𝒖⨂(𝜌𝒖)) + ∇𝑝 = 𝟎⁄

𝜕𝐸 𝜕𝑡 + ∇ ⋅ (𝒖(𝐸 + 𝑝)) = 0⁄

 

1757 Euler number (Eu), a dimensionless number used in fluid flow calculations. 

1758 Euler’s rotation equations describing rotation of a rigid body 

  fixed to body’s principle axis of inertia, 𝑰 ⋅ 𝝎ሶ + 𝝎 × (𝑰 ⋅ 𝝎) = 𝑴 

  𝑰 is the inertia matrix, 𝝎 is the angular velocity and 𝑴 is applied torques. 

1760 Euler’s three-body problem, to find the movement of a particle acted on by the force 
  of gravity from two point masses fixed in space. The problem is solvable. 

1760 Euler-Lotka equation, describes age-structured population growth. Equation was  
  based on original work of Euler and generalized by 20th century demographer Lotka. 

1760 Proved existence of principal curvatures and principal directions on a surface. 

1763 Introduced Euler’s totient function 𝜙(𝑛) ≡ #{𝑘 ∈ ℕ|𝑘 ≤ 𝑛 ∧ (𝑘, 𝑛) = 1} and 

  generalized Fermat’s little theorem to Euler’s theorem 𝑎𝜙(𝑛) ≡ 1(mod 𝑛) 
1765 Euler line, a well-defined line for every non-equilateral triangle passing through 

  the centroid, the orthocenter and the circumcenter of a given triangle. 

1765 Euler angles (𝛼, 𝛽, 𝛾) sometimes (𝜑, 𝜃, 𝜓) describing the orientation of a rigid body. 

1767 Euler’s geometric theorem 𝑑2 = 𝑅(𝑅 − 2𝑟) where 𝑅 and 𝑟 are radii for inscribed and 

  circumscribed circles of a triangle and 𝑑 is the distance between their centers. 

1768 Euler-Cauchy equation ∑ 𝑎𝑘𝑥
𝑘𝑦(𝑘)(𝑥)𝑛

𝑘=0 = 0, a 2nd order ODE. 

1768 Cauchy-Euler operator, an operator of the form 𝑝(𝑥) ⋅ 𝑑 𝑑𝑥⁄  with a polynomial 𝑝(𝑥). 
1768 The Euler method, numerical procedure for solving ordinary differential equations. 

1768 Euler diagrams, visual aid in syllogistic reasoning and precursor of Venn diagrams.  

1770 Eulerian integers, 𝑚+ 𝑛𝜔, 𝜔 = 𝑒2𝜋𝑖 3⁄  used by Euler to study Fermat’s last theorem. 

1772 Showed 231 − 1 = 2,147,483,647 was a prime, the biggest known until 1867. 

1775 Euler’s rotation theorem, any rotation of a body with one point fixed is equivalent to a  
  single rotation about some axis running through the fixed point. 

1777 Studied Cauchy-Riemann’s equations, used earlier by d’Alembert for hydrodynamics. 

1777 Introduced symbol 𝑖 for the imaginary unit. 

1780 Showed existence of Graeco-Latin squares a.k.a Euler squares for 𝑛=2𝑘+1 and 𝑛=4𝑘. 

  Euler conjectured that none exists for 𝑛=4𝑘+2, a false proof of this was given 1922. 

  Euler’s efforts for 𝑛=6 resulted in a puzzle, the 36-officer problem with no solution. 

  The conjecture was disproved in 1959, Euler squares actually exists for all 𝑛 > 6. 

1783 Conjectured the law of quadratic reciprocity which was later proved by Gauss. 

1783 Showed that the tetration limit, lim
𝑛→∞

𝑥 ↑↑ 𝑛 is convergent for 𝑒−𝑒 ≤ 𝑥 ≤ 𝑒1/𝑒.
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Euler’s formula can be expanded, not only from a spherical boundary to other 

shapes but also from three to higher dimensions. The next step after a planar 

graph would be a graph that can be drawn in three dimensions with no faces 

crossing each other. An 𝑛-dimensional polyhedron is called a polytope. It has 

cells of dimension 0,1, … , 𝑛 − 1 and  𝜒 = 𝑐0 − 𝑐1 +⋯+(−1)
𝑛−1𝑐𝑛−1 where 

𝑐𝑘 is the number of cells of dimension 𝑘. 

Examples (All the regular convex polytopes from four dimensions) 

4-cell (~ Tetrahedron) 𝑐0 = 5 𝑐1 = 10 𝑐2 = 10 𝑐3 = 5 𝜒 = 0 

Tesseract (~ Cube) 𝑐0 = 16 𝑐1 = 32 𝑐2 = 24 𝑐3 = 8 𝜒 = 0 

16-cell (~ Octahedron) 𝑐0 = 8 𝑐1 = 24 𝑐2 = 32 𝑐3 = 16 𝜒 = 0 

24-cell 𝑐0 = 24 𝑐1 = 96 𝑐2 = 96 𝑐3 = 24 𝜒 = 0 

120-cell 𝑐0 = 600 𝑐1 = 1200 𝑐2 = 720 𝑐3 = 120 𝜒 = 0 

600-cell 𝑐0 = 120 𝑐1 = 720 𝑐2 = 1200 𝑐3 = 600 𝜒 = 0 

 

 

 

 

 

 
Fig. 3.4.13  Tesseract, unfolded / Schlegel diagram / ortographic projection. 

Polytopes of every dimension and every shape of their boundary satisfies: 

∑ (−1)𝑘𝑐𝑘

𝑛 − 1

𝑘 = 0

= 𝜒 

Where 𝜒 is a topological invariant defined by the boundary. A sphere of 𝑛 

dimensions 𝑆𝑛 = {𝒙 ∈ ℝ
𝒏+𝟏||𝒙| = 1} has 𝜒(𝑆𝑛) = 1 + (−1)𝑛 whereas a 

torus of 𝑛 dimensions 𝑇𝑛 = 𝑆
1 × …× 𝑆1⏟        
𝑛 factors

 always has 𝜒(𝑇𝑛) = 0. 

Eulers’s characteristic is not the only use for 𝜒 in graph theory. There is a 

special branch that deals with different ways of labeling parts of a graph. The 

labels, usually integers are traditionally called colors. 

Definition. A coloring of a graph is an assignment of colors to vertices such 

that adjacent vertices are colored differently. The smallest number of colors 

needed to color a graph 𝐺 is called its chromatic number, 𝜒(𝐺). 

Example. 𝜒(𝐾𝑛) = 𝑛 and 𝜒(𝐾𝑚,𝑛 ) = 2 if 𝑚, 𝑛 > 0. 

Every drawing of a planar graph leads in a natural way to a new graph that 

has one vertex in each face of the old graph. 
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Definition. Every planar representation 𝐺෨ of a planar graph 𝐺 (or multigraph) 

has a dual graph 𝐺෨𝑑 with vertices equal to the faces of 𝐺෨ and with edges 

between faces that share a border edge in 𝐺෨. 

The duality is reflected in a similar definition of duality between polyhedra. 

 

 

 

 
Fig. 3.4.14  Dual graphs and dual polyhedra. 

The octagon and cube form a dual pair as does the dodecahedron and the 

icosahedron. The tetrahedron is its own dual. In higher dimensions there are 

similar dualities. The tesseract and 16-cell are dual as are the 120-cell and the 

600-cell. The 4-cell (4-dimensional tetrahedron) and the 24-cell are self-dual. 

The classical and most famous question in graph labeling was the four color 

map question. Given a partition of the plane into contiguous regions, is it 

possible to color the regions with no more than four colors so that no 

neighboring regions have the same color? Regions that only share a vertex 

are not considered to be neighbors. The question is now a theorem and by 

using our definitions and dualities it can be stated more shortly. 

Theorem. (The four color theorem) 

If 𝐺 is a planar graph then 𝜒(𝐺) ≤ 4. 

The question was of interest to mapmakers. It was posed in the 1850s and a 

proof was published in 1879. It received a lot of attention but it took more 

than 10 years before several errors were found. A valid proof was first given 

by Appel and Haken in 1976. The proof was based on a reduction to a large 

number of individual maps that could be checked by a computer program. It 

was the first major theorem to be proved with the help of a computer.  

Computer-assisted proof was controversial, not every mathematician 

accepted a proof that could not be checked by hand. Today it is widely 

accepted, especially with the introduction of special proof-checking software. 

The proof is actually easier for surfaces other than planes and spheres. A map 

on a closed orientable surface with genus 𝑔 (sphere with 𝑔 handles) requires 

𝑛 = ⌊1/2 ⋅ (7 + √48𝑔 + 1)⌋ colors. 

 

 

 

 

 
Fig. 3.4.15  Torus map requiring 7 colors and plane with 4 country colors.
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𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝛼(𝑥 − 𝛽)2 + 𝛾 

Modification 𝑦 = 𝑥2 

𝛽 = −𝑏/2𝑎 

translate ↔ 

𝛼 = 𝑎 

stretch/compress+ 

reflect ↕ if 𝛼 < 0 

𝛾 = 𝑐 − 𝑏2/4𝑎 

translate ↕ 
𝑓(𝑥) = 0 ⇔ 𝑥 ∈ {𝑥1, 𝑥2} 

3.5 Equations, Algebra and Complex numbers 

Solving equations is a common exercise in school mathematics. In this part 

the focus will be on equations with one unknown quantity often denoted 𝑥. 

Other variables that occur will usually be parameters that represent fixed but 

arbitrary numbers of some set. An example is 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 or in its 

reduced form 𝑥2 + 𝑝𝑥 + 𝑞 = 0. 

Equations have a left-hand side (LHS), a right-hand side (RHS) and an equals 

sign in between, 𝐿(𝑥) = 𝑅(𝑥). The goal is to find the set of solutions (roots) 
{𝑥|𝐿(𝑥) = 𝑅(𝑥)} and to express them as explicitly as possible. The sign for 

equality consisting of two equal lines was introduced by a mathematician 

from Wales in 1557. Some variations on ′ = ′ are: 

≠ not equal, 1 ≠ 2 

≈ almost equal, 𝜋 ≈ 3.14159 

≔ definition, 𝜏 ≔ 2𝜋 

≅ congruence (geometry), 𝐴𝐵𝐶 ≅𝐷𝐸𝐹 

≡ identity, congruence relation (arithmetic) or definition, 

    (𝑥 + 𝑦)2 ≡ 𝑥2 + 2𝑥𝑦 + 𝑦2 , sin2 𝑥 + cos2 𝑥 ≡ 1 , 7 ≡ 1 (mod 3) 

The domain of the variable(s) could be ℤ,ℚ,ℝ, ℂ or something else. It will 

affect what techniques to use, and if it is an easy or hard problem to solve. 

Diophantine equations with integer coefficients and solutions often lead to 

difficult and deep problems. The most interesting question is often if there is 

a solution and if so, how many. Approximating solutions with numerical 

methods is not unimportant. It’s essential for applied mathematics in science 

and engineering. 

To solve equations there are several techniques that need to be mastered. One 

is to apply identities (algebraic, trigonometric, etc.) that transform either side 

to a simpler or more suitable form. Completing the square:  

𝑥2 + 𝑝𝑥 + 𝑞 ≡ (𝑥 +
𝑝

2
)
2

−
𝑝2

4
+ 𝑞 

+ + 

− + 

(𝑥 + 𝑝 2⁄ )2 − (𝑝 2⁄ )2 + 𝑞 

 

𝑥2 𝑥 

𝑥 

𝑝𝑥 

𝑝 

𝑞 

𝑞 

1 
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Another technique is variable substitution, divide and conquer. Solve a 

problem by dividing it into easier steps. For 𝑥2 + 𝑝𝑥 + 𝑞 = 0 it could mean: 

𝑦 = 𝑥 +
𝑝

2
  ∧  𝑟 =

𝑝2

4
− 𝑞   →   𝑦2 − 𝑟 = 0 

Applying a bijective function on both sides 𝑓(𝐿(𝑥)) = 𝑓(𝑅(𝑥)) will not alter 

the solution set. Doing it several times may give 𝑥 alone on one side and a 

solution but care must be taken if 𝑓 is only bijective on a limited domain 𝐷𝑓. 

 𝑓𝛼(𝑥) = 𝑥 + 𝛼 𝑓𝛼
−1(𝑥) = 𝑥 − 𝛼 

 𝑔𝛽(𝑥) = 𝛽 ⋅ 𝑥  (𝛽 ≠ 0) 𝑔𝛽
−1(𝑥) = 𝑥 𝛽⁄  

 ℎ𝛾(𝑥) = 𝑥
𝛾  (𝛾 ≠ 0) ℎ𝛾

−1(𝑥) = 𝑥1 𝛾⁄  

 𝑓(𝑥) = 𝑒𝑥 𝑓−1(𝑥) = ln 𝑥 

 𝑔(𝑥) = sin 𝑥 (𝑥 ∈ [−𝜋
2
,
𝜋

2
] )   𝑔−1(𝑥) = arcsin 𝑥 

 𝑏𝑥 − 𝑎 = 0  (𝑏 ≠ 0) 𝑥 = (𝑔1 𝑏⁄ ∘ 𝑓𝑎)(0) =
𝑎

𝑏
 

Applying non-injective functions (many-to-one) like 𝑓(𝑥) = 𝑥2 can lead to 

extraneous solutions that should be checked and discarded if necessary.  

𝑥 = 1 ⇒ 𝑥2 = 12 ⇔ √𝑥2 = 1 ⇔ |𝑥| = 1 ⟺ 𝑥 ∈ {−1,1}. 

The “opposite” situation 𝑓(𝑥) = 𝑘 where 𝑓 is a non-

injective function can lead to multiple solutions. The 

inverse of 𝑓 if it  existed would be a multi-valued function. 

 

 

 

 

 

Multiplying with an expression 𝑘(𝑥), say an LCD to get rid of denominators 

can introduce extraneous solutions when 𝑘(𝑥𝑖) = 0 and dividing with 𝑘(𝑥) 
can remove solutions when 𝑘(𝑥𝑖) = 0, 𝑘(𝑥)𝑞(𝑥) = 𝑘(𝑥) ⇏ 𝑞(𝑥) = 1. It is 

better to factorize than to divide, 𝑘(𝑥)(𝑞(𝑥) − 1) = 0. If ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) 
then ℎ(𝑥) = 0 whenever 𝑥 ∈ 𝐷𝑓 ∩ 𝐷𝑔 and 𝑓(𝑥) = 0 or 𝑔(𝑥) = 0. 

Imagine a culture that only recognizes integers as valid numbers. For them 

the equation 𝑏𝑥 − 𝑎 = 0 (𝑎, 𝑏 ∈ ℤ) is only solvable when 𝑏|𝑎. There is an 

alternative, they could introduce 𝑎 𝑏⁄  but it would require a leap of faith. 

Number systems can sometimes be extended with new numbers with partially 

preserved properties embedded among the old numbers. 

𝑥 + 1 = 0 → ℕ ↷ ℤ
2𝑥 = 1 → ℤ ↷ ℚ

𝑥2 = 2 → ℚ ↷ ℝ

𝑥2 = −1 → ℝ ↷ ℂ

 

𝑦2 = 𝑟 → 𝑦 = ±√𝑟 → 

𝑥 = −𝑝 2⁄ ± √𝑝2 4⁄ − 𝑞 

    =
1

2
(−𝑝 ± √𝑝2 − 4𝑞) 
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𝑧 = 𝑥 + 𝑖𝑦 

|𝑧| = √𝑥2 + 𝑦2 

|𝑧|2 = 𝑧 ⋅ 𝑧̅ 

If 𝑥2 = −1 has a solution, call it 𝑖 or √−1 then it can’t belong to ℝ since the 

order relation on ℝ requires 𝑥2 ≥ 0 (see p.97). An extended numbers system 

containing the real numbers, an imaginary unit 𝑖 and operations for addition 

and multiplication must also contain the set 𝑪 = {𝑎 + 𝑏 ⋅ 𝑖|(𝑎, 𝑏) ∈ ℝ2}. The 

rules of arithmetic from page 79 suggests the following: 

Addition: (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) ≔ (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 
Multiplication:  (𝑎 + 𝑏𝑖) ⋅ (𝑐 + 𝑑𝑖) ≔ (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 
Additive identity: 0 + 0𝑖 ≡ 0 

Multiplicative identity: 1 + 0𝑖 ≡ 1 

Additive inverse: −(𝑎 + 𝑏𝑖) = (−𝑎) + (−𝑏)𝑖 ≡ −𝑎 − 𝑏𝑖 
Multiplicative inverse: (𝑎 + 𝑏𝑖)−1 = (𝑎2 + 𝑏2)−1 ⋅ (𝑎 − 𝑏𝑖)    𝑎 + 𝑏𝑖 ≠ 0  

 

complex numbers form a field ℂ = (𝑪,+,⋅ ,0,1) (check it!) with a natural 

embedding of the real numbers 𝑎 + 0𝑖 ≡ 𝑎. ( Pure imaginaries 0 + 𝑏𝑖 ≡ 𝑏𝑖 ). 
An alternative approach without reference to 𝑖2 = −1 is to set 𝑪 = ℝ2 with 
(𝑎, 𝑏) + (𝑐, 𝑑) ≡ (𝑎 + 𝑏, 𝑐 + 𝑑) and (𝑎, 𝑏) ⋅ (𝑐, 𝑑) ≡ (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐). 

• Complex plane 

It is natural to look at the complex numbers as part of a 2-dimensional plane. 

Complex number: 𝑧 = 𝑎 + 𝑏𝑖 , 𝑎, 𝑏 ∈ ℝ 

Real part:  𝑎 = Re(𝑧) = ℜ(𝑧) = 
 (𝑧 + 𝑧̅) 2⁄  

Imaginary part: 𝑏 = Im(𝑧) = ℑ(𝑧) = 
 (𝑧 − 𝑧̅) 2𝑖⁄  

Conjugate: 𝑧̅ = 𝑎 − 𝑏𝑖 

• Order 

ℂ has no linear order compatible with its field operations (p.79.3). It can be 

ordered lexically and in other ways but of more interest is the norm |𝑧| that 

turns ℂ into a metric space with distance 𝑑(𝑧, 𝑤) = |𝑧 − 𝑤|. 

1. 𝑑(𝑧, 𝑤) ≥ 0 
2. 𝑑(𝑧, 𝑤) = 0 ⇔ 𝑧 = 𝑤 

3. 𝑑(𝑧, 𝑤) = 𝑑(𝑤, 𝑧) 
4. 𝑑(𝑧, 𝑤) ≤ 𝑑(𝑧, 𝑣) + 𝑑(𝑣, 𝑤) 

• Polar form 

Complex numbers are defined by their absolute value 𝑟 and argument 𝜑. 

 

𝑧 = 𝑟 cos 𝜑⏟    
𝑥

+ 𝑖 ⋅ 𝑟 sin 𝜑⏟  
𝑦

 

𝑟 = |𝑧| 
𝜑 = arg(𝑧)

𝑎 + 𝑏𝑖 

𝑎 − 𝑏𝑖 

𝑧 

𝑧̅ 
𝑎 

𝑏 

−𝑏 

Re 

Im 

𝑧 

𝑤 

−𝑤 

𝑧 

𝑤 

𝑥 

𝑦 

𝑟 cos𝜑 

𝜑 

𝑟 sin𝜑 

𝑟 

𝑥 

𝑦 
The argument 𝜑 (phase) is 

undefined for 𝑧 = 0 and given 

up to a multiple of 2𝜋 by: 

cos 𝜑 = 𝑥 𝑟⁄   and sin 𝜑 = 𝑦 𝑟⁄ . 

𝜑 ∈ (−𝜋, 𝜋] is the natural choice. 
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Algebra 

• Exponential form 

Taylor series of cos 𝑥, sin 𝑥  and 𝑒𝑥  are absolutely convergent for complex as 

well as real arguments. Their domains can be expanded to all of ℂ. 

 

cos 𝑧 = ∑
(−1)𝑛

(2𝑛)!
𝑧𝑛

∞

𝑛 = 0

sin 𝑧 = ∑
(−1)𝑛

(2𝑛 + 1)!
𝑧𝑛

∞

𝑛 = 0

𝑒𝑧 = ∑
𝑧𝑛

𝑛!

∞

𝑛 = 0

 

 

𝑖𝑛 = (1, 𝑖, −1, −𝑖) for 𝑛 ≡ (0,1,2,3) (mod 4)  →  𝑟𝑒𝑖𝜑 = 𝑟(cos 𝜑 + 𝑖 sin 𝜑) 
 

Complex trigonometric identities become easy to learn, 𝑒𝑧 ⋅ 𝑒𝑤 = 𝑒𝑧+𝑤 → 

 

cos(𝛼 ± 𝛽) = Re{(cos 𝛼 + 𝑖 sin 𝛼)(cos 𝛽 ± 𝑖 sin 𝛽)}  
sin(𝛼 ± 𝛽) = Im{(cos 𝛼 + 𝑖 sin 𝛼)(cos 𝛽 ± 𝑖 sin 𝛽)} 

 

It was Leonhard Euler who used complex analysis and power series to link 

trigonometric functions to the complex exponential function. His work was 

preceded by others who studied complex logarithms. The famous formula 

below was published in 1748. It is now known as Euler’s formula. 

 

 

 

 

 

 

 

 

 

 

 

Whenever there is a vote for the most beautiful formula in mathematics, this 

is the favorite. It brings together in a surprising and unifying way, constants 

and concepts from different times and branches that used to be separate. 

 

• Multiplication, division, powers and roots 

𝑧 ⋅ 𝑤 = 𝑟𝑧𝑒
𝑖𝜑𝑧 ⋅ 𝑟𝑤𝑒

𝑖𝜑𝑤 = 𝑟𝑧𝑟𝑤𝑒
𝑖(𝜑𝑧+𝜑𝑤) 

𝑧 𝑤⁄ = 𝑟𝑧𝑒
𝑖𝜑𝑧 𝑟𝑤𝑒

𝑖𝜑𝑤⁄ = 𝑟𝑧 𝑟𝑤⁄ 𝑒𝑖(𝜑𝑧−𝜑𝑤) 
𝑧𝑛 = [𝑟(cos 𝜑 + 𝑖 sin 𝜑)]𝑛 = 𝑟𝑛(cos 𝑛𝜑 + 𝑖 sin 𝑛𝜑)  De Moivre′s formula 

𝜔𝑛 = 1 has 𝑛 roots of unity, 𝜔𝑘 = 𝑒
𝑖𝑘⋅

2𝜋

𝑛  , 𝑘 ∈ {0,1, … , 𝑛 − 1}. 
For a general LHS, 𝜔𝑛 = 𝑧 there is no natural choice of root. 

√𝑧
𝑛

 with 𝑧 = 𝑟𝑒𝑖𝜑 is a multi-valued function, 

√𝑧
𝑛

= √𝑟
𝑛

⋅ 𝑒𝑖(𝜑 𝑛⁄ +𝑘⋅2𝜋 𝑛⁄ ) , 𝑘 ∈ {0,1, … , 𝑛 − 1}. 

multiply/divide magnitudes 

and add/subtract arguments. 

𝑒𝑖𝑥 = cos𝑥 + 𝑖 sin 𝑥 

(𝑥 in radians) 

 

−𝑒𝑖𝜋 = 1 

Geometry 

Analysis 

Negative 
numbers 
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• Quadratic equation 

The solution is found by completing the square, not by looking up formulas. 

 

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 ∆> 0 𝑧1,2 = (−𝑏 ± √∆)/2𝑎 Two real roots 

𝑎, 𝑏, 𝑐 ∈ ℝ ∆= 0 𝑧1 = −𝑏 2𝑎⁄ Real double root

∆= 𝑏2 − 4𝑎𝑐 ∆< 0 𝑧1,2 = (−𝑏 ± 𝑖√−∆) 2𝑎⁄ Complex conjugates

𝑎, 𝑏, 𝑐 ∈ ℂ → 𝑧 = (−𝑏 + ∆1 2⁄ )/2𝑎

 

 

Quadratic polynomials 𝑃2(𝑧) = 𝑎𝑧
2 + 𝑏𝑧 + 𝑐 have 

two roots unless the discriminant ∆≡ 𝑏2 − 4𝑎𝑐 = 0. If 

so the root act as a double root 𝑃(𝑧) = 𝑎(𝑧 − 𝑧1)
2. 

With real coefficients the roots are either real or a 

conjugate pair (𝑧1, 𝑧2) with 𝑧2 = 𝑧1̅. 

Methods for solving quadratic equations were known by Babylonian 

mathematicians as early as 2000 BC. Cubic and quartic equations were 

solved by Italian mathematicians in the 16th century. The formulas are long 

and not very useful. Despite centuries of efforts by many mathematicians, no 

general solution could be found for equations of degree five. A general 

solution is a formula of the coefficients that finds a root with a finite number 

of basic arithmetical operations and root extractions. Proofs of the non-

existence of such a formula were given by Ruffini in 1799 (incomplete) and 

by Abel in 1824 (complete). 

Definition. 
A polynomial function over 𝕊 (a set such as ℤ,ℚ,ℝ or ℂ) is a function 

𝑓: 𝕊 → 𝕊, 𝑥 ↦ 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0  (𝑎𝑛 ≠ 0 if 𝑛 > 0) 
with 𝑛 ∈ ℕ0 and coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ 𝕊. 

If 𝑎𝑛 ≠ 0 then 𝑛 is the degree of the polynomial, deg(𝑓) = 𝑛. 

𝑓 = 0 ⇒ deg(𝑓) is undefined, −1 or −∞. Conventions vary. 

The shorter term polynomial is often used which can cause confusion with 

polynomials in algebra, a similar but slightly different concept. 

Definition. 
A polynomial ring 𝐾[𝑋] is a set of expressions 𝑃 called polynomials 

𝑃 = 𝑝0 + 𝑝1𝑋 + 𝑝2𝑋
2 +⋯+ 𝑝𝑛𝑋

𝑛  

with coefficients 𝑝𝑘 in a ring 𝐾 (usually a field 𝔽 like ℚ,ℝ or ℂ ) 

and formal symbols 𝑋 for which 𝑋0 = 1, 𝑋1 = 𝑋 and 𝑋𝑘𝑋𝑙 = 𝑋𝑘+𝑙 . 

The setting of the polynomial matters. A polynomial like 𝑥2 − 2 is prime 

when viewed over ℚ but factorized over ℝ, (𝑥 + √2)(𝑥 − √2). Polynomials 

will be assumed to be functions over ℝ or ℂ for the rest of this chapter. 

Polynomial rings will be treated in a later chapter on algebra. 
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Fig. 3.5.1  How to find the roots of cubic and quartic polynomials 
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 2𝑥2 +4𝑥 +7   

𝑥2 − 2𝑥 − 1 2𝑥4 +0𝑥3 −3𝑥2 +7𝑥 −6 

 2𝑥4 −4𝑥3 −2𝑥2   

  4𝑥3 −𝑥2 +7𝑥  

  4𝑥3 −8𝑥2 −4𝑥  

   7𝑥2 +11𝑥 −6 

   7𝑥2 −14𝑥 −7 

    25𝑥 +1 

 

← 𝑓 

← 𝑟 

𝑔⬚
↘

 

𝑞⬚
↘

 

Integers and polynomials share many properties. They are both rings with all 

the familiar properties of addition and multiplication. Euclidean division of 

integers with quotient and remainder, 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < |𝑏|, (𝑏 ≠ 0), 
divisibility and the Euclidean algorithm can be generalized to polynomials if 

modulus, |𝑛| for integers is replaced by the degree, deg(𝑓) for polynomials. 

Theorem 10.  (The division algorithm) 

Let 𝑓 and 𝑔 ≠ 0 be two polynomials then there is polynomials 𝑞 and 𝑟 s.t. 

𝑓 = 𝑔𝑞 + 𝑟 ,  0 ≤ deg(𝑟) < deg(𝑔) or 𝑟 = 0          (  𝑓/𝑔 = 𝑞 + 𝑟/𝑔  ) 

Proof 
𝑞 and 𝑟 are found by polynomial long division, best described by a concrete 

example. Let 𝑓 = 2𝑥4 − 3𝑥2 + 7𝑥 − 6 and 𝑔 = 𝑥2 − 2𝑥 − 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If 𝑓 and 𝑔 were polynomials over a field 𝔽 then so would 𝑞 and 𝑟 be since 

their coefficients are obtained by adding, subtracting, multiplying and all 

divisions are by the leading coefficient of 𝑔 which is non-zero. ∎ 

Definition. 
The polynomial 𝑓 is a divisor of the polynomial 𝑔 iff there is a polynomial 𝑘 

such that 𝑔 = 𝑓𝑘. It is written 𝑓|𝑔 

Definition. 
A polynomial 𝑘 is a greatest common divisor GCD of two polynomials (not 

both zero-polynomials) iff 𝑘 is a common divisor of 𝑓 and 𝑔 and there is no 

other common divisor of higher degree. The GCD is written (𝑓, 𝑔) 

(𝑓, 𝑔) is uniquely defined up to a multiplicative constant. A natural choice is 

to use the unit as the coefficient of the highest degree. Polynomials are called 

coprime or relatively prime when (𝑓, 𝑔) = 1. 

2𝑥4 − 3𝑥2 + 7𝑥 − 6

𝑥2 − 2𝑥 − 1
= 2𝑥2 + 4𝑥 + 7 +

25𝑥 + 1

𝑥2 − 2𝑥 − 1
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A polynomial ∑ 𝑎𝑘𝑥
𝑘𝑛

𝑘=0  looks like a number represented in base 𝑥. What 

would happen if we extended polynomials to negative powers of 𝑥 when we 

make polynomial division? would there be a polynomial version of repeated 

decimals and irrationals to express 𝑓/𝑔 when 𝑓, 𝑔 ∈ ℝ[𝑋]?  

1

𝑥 − 𝑟
=
1

𝑥
(

1

1 − 𝑟 𝑥⁄
) =

1

𝑥
∑ (

𝑟

𝑥
)
𝑘∞

𝑘 = 0

(~ 0. 1 𝑟 𝑟2… )𝑥 

 

 
 0 +𝑎𝑥−1 +𝑏𝑥−2 −𝑎𝑟2𝑥−3 −𝑏𝑟2𝑥−4 …  

𝑥2 + 𝑟2 𝑎𝑥 +𝑏 +0𝑥−1 +0𝑥−2 …    

  0       

 𝑎𝑥 +𝑏 +0𝑥−1      

 𝑎𝑥  +𝑎𝑟2𝑥−1      

  𝑏 −𝑎𝑟2𝑥−1 +0𝑥−2     

  𝑏  𝑏𝑟2𝑥−2     

   −𝑎𝑟2𝑥−1 −𝑏𝑟2𝑥−2 +0𝑥−3    

 

 

 

 

  −𝑎𝑟2𝑥−1  −𝑎𝑟4𝑥−3    

    −𝑏𝑟2𝑥−2 +𝑎𝑟4𝑥−3 +0𝑥−4   

     …    

𝑎𝑥 + 𝑏

𝑥2 + 𝑟2
= (

𝑎

𝑥
+
𝑏

𝑥2
)∑ (

−𝑟2

𝑥2
)

𝑘𝑛

𝑘=0
= (0. 𝑎 𝑏)𝑥(1. 0 − 𝑟

2 0 𝑟4 0 − 𝑟6… )𝑥 

Power series with negative exponents can be useful, but not like this. They 

are used to represent functions 𝑓(𝑧) = ∑ 𝑎𝑘𝑧
𝑘∞

𝑘=−∞  in complex analysis.  

Theorem 11.  (Euclid’s algorithm) 

If 𝑓 and 𝑔 are two polynomials, (not both zero) then (𝑓, 𝑔) = 𝑐𝑟𝑚 where 

𝑐 is a non-zero constant and 𝑟𝑚 is the last non-vanishing rest term in the 

Euclidean algorithm. If 𝑟1=0 and deg(𝑓) ≤ deg(𝑔) then (𝑓, 𝑔) = 𝑐𝑓, 𝑐 ≠ 0. 

The algorithm and the proof are analogous to the integer case from page 60. 

With this tools we are better equipped to study algebraic equations 𝑓(𝑧)=0 

where 𝑓 is a polynomial over ℝ or ℂ. 

Definition. 𝛼 is a root to 𝑓 iff 𝑓(𝛼) = 0. 

Theorem 12.  (Factor theorem)  𝑓(𝛼) = 0 ⇔ (𝑧 − 𝛼)|𝑓(𝑧) 

Proof. ⇒ Divide by (𝑧 − 𝛼),  𝑓(𝑧) = (𝑧 − 𝛼)𝑞(𝑧) + 𝑐, 𝑐 ∈ ℂ. 

  𝑓(𝛼) = 0 ⇒ (𝑧 − 𝛼)|𝑓(𝑧) 
 ⇐ 𝑓(𝑧) = (𝑧 − 𝛼)𝑞(𝑧) ⇒ 𝑓(𝛼) = 0 ∎ 
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Definition. Let 𝑓0 be a polynomial. If (𝑧 − 𝛼)𝑘|𝑓(𝑧) but (𝑧 − 𝛼)𝑘+1 ∤ 𝑓(𝑧) 
then the root 𝛼 is of multiplicity 𝑘. 

This can also be expressed as 𝑓(𝑧) = (𝑧 − 𝛼)𝑘𝑔(𝑧) for some polynomial 𝑔 

such that 𝑔(𝛼) ≠ 0. Quadratic roots of multiplicity 2 has zero slope at the 

root. It suggests a definition based on derivation 𝐷 ∑ 𝑎𝑖𝑧
𝑖𝑛

𝑖=0 = ∑ 𝑖𝑎𝑖𝑧
𝑖−1𝑛

𝑖=1 . 

For a multiplicity 𝑘 root: 𝐷(𝑖)𝑓(𝛼) = 0 , 𝑖 = 0,1, … , 𝑘-1 and 𝐷(𝑘)𝑓(𝛼) ≠ 0. 

Roots with 𝑘 = 1 are called simple, 𝑘 = 2 are double roots and 𝑘 > 1 are 

multiple roots. 𝑧3 − 𝑧2 = 𝑧2(𝑧 − 1) has a simple root 1, and a double root 0. 

Counted with multiplicity there are 3 roots. 

How many roots can a polynomial 𝑃(𝑧) = 𝑎𝑛𝑧
𝑛 +⋯+ 𝑎1𝑧 + 𝑎0 of degree 𝑛 

have if roots of multiplicity 𝑘 are counted 𝑘 times? Clearly not more than 𝑛, 

that would give a divisor of degree bigger than 𝑛. If 𝑎𝑘 ∈ ℝ and only real 

roots are counted then there can be fewer, (𝑥2 + 1)𝑘 has no real roots. 

Theorem 12. 
If 𝑃 is a polynomial over ℝ with root 𝑐 = 𝑎 + 𝑏𝑖 (𝑏 ≠ 0) then 𝑐̅ = 𝑎 − 𝑏𝑖 is 

also a root and of the same multiplicity. Complex roots come in pairs 𝑐, 𝑐̅. 

Proof. 

𝑎𝑘 ∈ ℝ⟹ 𝑃(𝑐̅) = 𝑃(𝑐)̅̅ ̅̅ ̅̅ = 0̅ = 0, 

divide with (𝑧 − 𝑐)(𝑧 − 𝑐̅) and repeat if necessary. 

Definition. 
A field 𝔽 is algebraically closed if every non-constant polynomial in 𝔽[𝑋] 
has at least one root in 𝔽. 

Theorem 13. (Fundamental theorem of algebra) 

ℂ is an algebraically closed field. 

Corollary.  (A.k.a fundamental theorem of algebra) 
Every polynomial 𝑓 over ℂ of degree 𝑛 ≥ 1 has exactly 𝑛 roots in ℂ if they 

are counted according to their multiplicity. 

Lagrange interpolation 

𝑃(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛) passes through (𝑥𝑖 , 0) for 𝑖=1,2, …𝑛. 

Is there a polynomial that passes through (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛  with 𝑥𝑖 ≠ 𝑥𝑗 if ≠ 𝑗 ?  

𝑙𝑘(𝑥) = ∏
(𝑥 − 𝑥𝑖)

𝑥𝑘 − 𝑥𝑖

𝑛

𝑖 = 1

  makes 𝑙𝑘(𝑥𝑚) = {
0 if 𝑚 = 𝑘
1 if 𝑚 ≠ 𝑘

    ( Lagrange basis )  

 

𝐿(𝑥) = ∑ 𝑦𝑘𝑙𝑘(𝑥)

𝑛

𝑘 = 1

 is of degree 𝑛 − 1 and passes through (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛  
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Proof. (Corollary, complex polynomials of degree 𝑛 has 𝑛 roots) 

The corollary follows from assuming the existence of one root and induction 

over the degree. If 𝑛 = 1 then 𝑓(𝑧) = 𝑎𝑧 + 𝑏, 𝑎 ≠ 0  with root −𝑏 𝑎⁄ . 

F.T.A ⇒ 𝑓(𝑧) = (𝑧 − 𝑐)𝑔(𝑧) with 𝑐 ∈ ℂ and 𝑔 of degree 𝑛 − 1 and the same 

number of roots by assumption so 𝑓(𝑧) has 𝑛 roots counted with multiplicity.∎ 

The fundamental theorem of algebra depends on the completeness of the real 

numbers which is a concept from analysis so ironically despite its name there 

is no purely algebraic proof of the fundamental theory of algebra. 

Proof. (Every complex non-constant polynomial has at least one root) 

Let 𝑧𝑅,𝜑 = 𝑅𝑒
𝑖𝜑 then 0 ≤ 𝜑 < 2𝜋 will parametrize one counter-clockwise 

lap around 𝑧 = 0 at radius 𝑅. 

Let 𝑃(𝑧) = 𝑎𝑛𝑧
𝑛 +⋯+ 𝑎1𝑧 + 𝑎0, 𝑎𝑛 , 𝑎0 ≠ 0 then 𝑃(𝑧𝑅,𝜑) will trace out a 

closed curve in the complex plane. 𝑎𝑛 = 𝑟𝑒
𝑖𝛼 → 𝑎𝑛𝑧𝑅,𝜑

𝑛 = 𝑟𝑅𝑛𝑒𝑖(𝑛𝜑+𝛼). 

For 𝑅 large enough |𝑎𝑛𝑧
𝑛| ≫ |𝑎𝑛−1𝑧

𝑛−1 +⋯𝑎1𝑧 + 𝑎0|)  
𝑃(𝑧𝑅,𝜑) will loop around the oringin 𝑛 times, winding number +𝑛. 

 

 

 

 

 

 

 
Fig. 3.5.2  Polynomial function in the complex plane. 

 

As 𝑅 → 0 the image 𝑃(𝑧𝑅,𝜑) will close in around 𝑃(0) = 𝑎0 and for small 

enough 𝑅 it is contained in a disc outside 0. (𝑎0 = 0 gives a trivial root)  

During the shrinking the loops must cross the origin and then 𝑃(𝑧) = 0. 

If it never happened we could remove 𝑧 = 0 and have a violation of winding 

number invariance around the origin, of a continuous deformation of a closed 

curve in a plane with the origin removed. 

A general polynomial of degree 𝑛 in ℂ[𝑋] with complex roots 𝑐1, … , 𝑐𝑛 can 

be factored into polynomials of degree one. 

𝑃(𝑧)

𝑎𝑛
= (𝑧 − 𝑐1)… (𝑧 − 𝑐𝑛) 

A general polynomial of degree 𝑛 in ℝ[𝑋] has real roots (𝑟𝑖)𝑖=1
𝑗

 𝑗 ≥ 0 and 

complex roots that come in conjugate pairs (𝑐𝑖 , 𝑐𝑖̅)𝑖=1
𝑘  𝑘 ≥ 0, 𝑛 = 𝑗 + 2𝑘. It 

can be factored into polynomials of degree one and two. 

𝑃(𝑥)

𝑎𝑛
= (𝑥 − 𝑟1) … (𝑥 − 𝑟𝑗)(𝑥

2 − 2Re 𝑐1 + |𝑐1|
2) … (𝑥2 − 2Re 𝑐𝑘 + |𝑐𝑘|

2) 

𝑎𝑛−1𝑧
𝑛−1 +⋯+ 𝑎0 
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3.6 Geometry 

Geometry divides broadly into synthetic geometry and analytic geometry. 

Synthetic geometry, sometimes called axiomatic or pure geometry is the 

study of geometry without coordinates or formulas. The axiomatic form with 

primitives, axioms, rigorous deduction (synthesis) and construction with ruler 

and compass is described in Euclid’s Elementa. With Descartes’ introduction 

of coordinates came a new development that could take advantage of algebra 

and other analytic methods. The two branches are complementary; insights 

gained with one method can stimulate progress in the other branch. 

School geometry starts with practical geometry, the kind of geometry that got 

mathematics started in most ancient civilizations. Practical geometry was 

intended for concrete applications, it contains terminology for geometric 

concepts and formulas for calculations of lengths, areas and volumes. 

Practical Geometry 
as a formula sheet 

Angles Circles 

A B 

C 

𝛼: ∠BAC 

1(2) 

𝛼 

𝛼 
𝛽 

𝛾 

Acute angle: 𝛼 < 90° 

Obtuse angle: 𝛽 > 90° 

Straight angle: 𝛾 = 180° 

Right angle: 𝛾 = 90° 

Complimentary angles: 𝛼 + 𝛽 = 90° 

𝛼 
𝛽 𝛾 

Transversal 

Corresponding angles: 𝛼 = 𝛾 

Alternate angles: 𝛽 = 𝛾 

 

𝛼 
𝛽 
𝛾 

𝛿 
 a 

b 
a∥b 𝛾 + 𝛿 = 180° 

𝛼 𝛽 

𝛾 

Vertical angles: 𝛼 = 𝛽 

Supplimentary angles: 𝛼 + 𝛾 = 180° 

 

2𝜃 

𝜃 
𝜑 

𝜑 

A 

B 

X 

C 

D 

AX⋅BX=CX⋅DX 

A 

B 
C 

D 

X 

a 

c b 

d 

AX⋅XB=CX⋅XD 

Cyclic quadrilateral: ADBC 

Semiparameter: s=(a+b+c+d)/2 

Area: √(s − a)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑) 
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2(2) 

A 

B C 
b 

h 

     TriangleABC: 

      ∠A+∠B+∠C=180° 

                   Area: 1
2
bh 60° 60° 

60° 

Equilateral Isosceles 30°-60°-90° 

60° 

30° 

2 

1 
√3 45° 

45° 

√2 

1 

1 

45°-45°-90° 

Congruence 

A 

C 

B 

A’ 
B’ 

C’ 
ABC≅A’B’C’ 

related by
isometry

{
translation,
rotation or
reflection

 

Similarity 

A 

B 

C 
A’ C’ 

B’ 

ABC~A’B’C’ 

{
isometry
or scaling

 

Right triangle 

c2 = a2 + b2 

hc
−2 = a−2 + b−2 a 

b 
c 

hc 

A 

B C 

B’ C’ 
BC∥B’C’ 

ABC~AB’C’ 
AB

AB′
=

AC

AC′
=

BC

B′C′
 

AB

BB′
=
AC

CC′
 

Quadrilateral ABCD∶  

Skriv en ekvation här.

+∠B+∠C+∠D=360° 

A 

B 

C 

D 

 Square Rectangle Rhombus Rhomboid Parallellogram Trapezoid 

 a≠b,angles≠90° A=1
2
(a+c)⋅h 

h 
a a 

b 

c 

Diagonal (D), Perimeter (P), Arc (C), Area (A), Inner angle sum (S), Base area (B), Volume (V) 

   
Regular pentagon Regular hexagon 𝑛-gon Circle Sector 

 D=1+√5
2

a D=2a P=∑ a𝑘
𝑛
𝑘=1  P=2𝜋𝑟 C= 𝛼

360°
2𝜋𝑟

 A=√25+10√5
4

a2 A=3√3
2

a2      S=(𝑛 − 2) ∙ 180° A=𝜋𝑟2 A= 𝛼

360°
𝜋𝑟2=

𝐶𝑟

2
 

a 

D 

a 

D 

a1 

a2 

an 

𝛼1 

𝛼2 

𝛼𝑛  

𝑟 𝛼 

 

 Rectangular  

Cube Cuboid / Box Parallelepiped Prism 

 D2=a2+b2+c2 6 parallellogram faces V=B⋅h 

a b 

c 

a 
a 

a 
D 

𝛼 

𝛽 
𝛾 

h 
h 

 

 Cuboid Cylinder Pyramid Cone Sphere 

6 quadrilaterals   V=B⋅h   (polygon base) V=
B⋅h

3
    V=

4𝜋𝑟3

3
    A=4𝜋𝑟2 

h h 

Apex 

𝑟 
h 


