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A cyclic quadrilateral is a polygon where all four vertices lie on a circle. 

Cyclic polygons are exceptional except for triangles. Every triangle has a 

unique circumscribed circle. Its center called the circumcenter is located at 

the intersection of the three perpendicular bisectors. The proof of existence is 

similar to the proof for a unique inscribed circle, centered at the intersection 

of the three angular bisectors, the incenter. 

 

 

 

 

 

 

 

 

Fig. 3.6.1  Incircle, circumscribed circle and excircles with angle∕segment bisectors. 

Proof. (Inscribed circle) 

Any inscribed circle must be centered on AP, 

the angle bisector of ∠BAC. 

Let point X vary along AP from A to P. 

𝑟𝐵(X) = 𝑟𝐶(X) ≡ 𝑟𝐵,𝐶(X) 

𝑟𝐵,𝐶(𝑋) is strictly increasing. 

𝑟𝐴(X) is strictly decreasing. 

0 = 𝑟𝐵,𝐶(A) < 𝑟𝐴(A)

𝑟𝐵,𝐶(P) > 𝑟𝐴(P) = 0
} Continuity → ∃! X s. t. 𝑟𝐵,𝐶(X) = 𝑟𝐴(X) ∎ 

Alternative proof: 

Intersection of bisectors to ∠A and ∠B gives a point X s.t. 

𝑟𝐵(X) = 𝑟𝐶(X) and 𝑟𝐶(X) = 𝑟𝐴(X) → 𝑟𝐴 = 𝑟𝐵 = 𝑟𝐶  at point X, 

which is the unique center of the inscribed circle of ABC. 

Two other examples where three lines in a triangle intersect in a single point 

are the orthocenter (altitudes) and the centroid (apex–midpoint lines). 

 

 

 

 

 

 

Fig. 3.6.2  Orthocenter and centroid of a triangle.
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The centroid is the geometric center of an object. If an object is divided into 

subparts that approach zero size then the arithmetic mean of their positions 

will approach the geometric center. When the mean is weighted by local 

density you get the mass center from which the object balances in any 

orientation under the influence of a uniform gravitational field. The centroid 

of a two-dimensional shape can be found by intersecting plumb-lines. 

Vector algebra is a useful approach to show that the three lines will intersect 

in a single point. A vector can be visualized as a displacement, a directed 

segment from one point A to another point B, AB⃗⃗⃗⃗  ⃗. The word “vector” comes 

from Latin and means carrier. In epidemiology a vector carries and transmits 

pathogens from one organism to another. 

AB⃗⃗⃗⃗  ⃗ + 𝐵𝐶⃗⃗⃗⃗  ⃗ equals 𝐴𝐶⃗⃗⃗⃗  ⃗ but what about AB⃗⃗⃗⃗  ⃗ + CD⃗⃗⃗⃗  ⃗? In a flat Euclidean space we 

solve it by parallel displacement. Directed segments related by a translation 

represent one and the same vector. Translate them to a common origin and 

form a parallelogram or put one vector after the other. Vectors have direction 

and length, ‖𝒗‖ ≥ 0 but no particular origin. They can be multiplied by 

scalars, 𝑐 ∈ ℝ. 𝑐 < 0 means the opposite direction and ‖𝑐 ⋅ 𝒗‖ = |𝑐| ⋅ ‖𝒗‖. 

Comparing vectors with different origin in a curved space requires extra care.     

 

 

 

 

 

 

An algebra over a field is a vector space equipped with a bilinear product. 

Multiplication of vectors is called scalar product or dot product. 

Definition. (Scalar product) 

𝒖 ⋅ 𝒗 ≡ ±‖𝒖‖ ⋅ 𝑣∥ 

Positive sign if 𝒖 and 𝒗∥ point in the same direction and 

negative sign if they point in opposite directions. 

𝒗∥ is the projection of 𝒗 along the axis of 𝒖 and 

𝒗⊥ is the projection along the perpendicular axis. 

𝒖 ⋅ 𝒗 = ‖𝒖‖ ⋅ ‖𝒗‖ ⋅ cos 𝜃 = ±‖𝒗‖ ⋅ 𝑢∥ = 𝒗 ⋅ 𝒖 

𝒖 ⋅ (𝛼𝒗 + 𝛽𝒘) = 𝛼𝒖 ⋅ 𝒗 + 𝛽𝒖 ⋅ 𝒘 

𝒖 ⊥ 𝒗 ⇔ 𝒖 ⋅ 𝒗 = 0  (𝒖 and 𝒗 are perpendicular iff their dot product is zero) 
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The geometric vectors satisfy the properties of a vector space (𝑉, +,⋅) over a 

field 𝔽. Let 𝒖, 𝒗 and 𝒘 be vectors in 𝑉 and let 𝑎 and 𝑏 be scalars in 𝔽, then: 

𝒖 + (𝒗 +𝒘) = (𝒖 + 𝒗) + 𝒘 Associativity of addition 

𝒖 + 𝒗 = 𝒗 + 𝒖 Commutativity of addition 

∃𝟎 ∈ 𝑉 s.t. ∀𝒗 ∈ 𝑉: 𝒗 + 𝟎 = 𝒗 Existence of zero vector 

∀𝒗 ∈ 𝑉 ∃𝒘 ∈ 𝑉 𝑠. 𝑡. 𝒗 + 𝒘 = 𝟎 Existence of additive vector  inverse 

𝑎(𝑏𝒗) = (𝑎 ⋅𝔽 𝑏)𝒗 Scalar and field product compatible 

1 ⋅ 𝒗 = 𝒗 Multiplicative identity in 𝔽, also for 𝑉 

𝑎(𝒖 + 𝒗) = 𝑎𝒖 + 𝑎𝒗  Distributivity of ⋅𝑉 with respect to + 

(𝑎 +𝔽 𝑏)𝒗 = 𝑎𝒗 + 𝑏𝒗 Distributivity of ⋅ with respect to +𝔽 

 

A space (𝑉, +,⋅) with an inner product 〈⋅,⋅〉: 𝑉 × 𝑉 → ℝ (or ℂ) like the dot 

product, is called an inner product space if the inner product satisfies: 

〈𝒖, 𝒗〉 = 〈𝒗, 𝒖〉 Conjugate symmetry 

〈𝑎𝒖 + 𝑏𝒗,𝒘〉 = 𝑎〈𝒖,𝒘〉 + 𝛽〈𝒗,𝒘〉 Linearity of 〈⋅,⋅〉 in first argument 

〈𝒖, 𝒖〉 ≥ 0 ∧ (〈𝒖, 𝒖〉 = 0 ⇔ 𝒖 = 𝟎)  Positive-definiteness 

A vector space (𝑉, +,⋅) over a field 𝔽 ⊆ ℂ with a norm ‖⋅‖: 𝑉 → ℝ like the 

length of a vector, is called a normed vector space if the norm satisfies: 

‖𝑎𝒗‖ = |𝑎| ⋅ ‖𝒗‖ Absolute homogeneity / scalability 

‖𝒖 + 𝒗‖ ≤ ‖𝒖‖ + ‖𝒗‖ Triangle inequality 

‖𝒗‖ = 0 ⇒ 𝒗 = 𝟎 Only the zero vector has norm zero 

Proof. (Centroid)  

Line through A and D,  AD⃗⃗⃗⃗  ⃗ = AB⃗⃗⃗⃗  ⃗ + 1

2
BC⃗⃗⃗⃗  ⃗: 

OA⃗⃗⃗⃗  ⃗ + 𝑘 ⋅ (AB⃗⃗⃗⃗  ⃗ +
1

2
BC⃗⃗⃗⃗  ⃗) = 

OA⃗⃗⃗⃗  ⃗ + 𝑘 ⋅ (OB⃗⃗⃗⃗  ⃗ − OA⃗⃗⃗⃗  ⃗ +
1

2
(OC⃗⃗⃗⃗  ⃗ − OB⃗⃗⃗⃗  ⃗)) = 

(1 − 𝑘)OA⃗⃗⃗⃗  ⃗ +
𝑘

2
⋅ (OB⃗⃗⃗⃗  ⃗ + OC⃗⃗⃗⃗  ⃗) 

The point P where 1 − 𝑘 = 𝑘

2
⟺ 𝑘 = 2

3
 

is symmetric with respect to A, B and C. 

P = 1

3
(OA⃗⃗⃗⃗  ⃗ + OB⃗⃗⃗⃗  ⃗ + OC⃗⃗⃗⃗  ⃗)  

The symmetry means that AD, BE and CF must intersect in this point. ∎ 

∴ The center of mass and geometric center of ABC lies on the intersection 

of the apex-midpoint lines at a distance 2/3 from the apex. 

A proof that also altitudes intersect in a single point is left as an exercise. 
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The circumcenter, centroid and orthocenter are collinear. They all lie on the 

Euler line mentioned on page 132. Some other special triangle points also lie 

on the line but the incenter is on the Euler line only for isosceles triangles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6.3  Euler line with orthocenter, centroid and circumcenter. Incenter is off line. 

Synthetic geometry, the one without coordinates and formulas did not end 

with Euclidean geometry. Over time there came other axiomatic formulations 

and other types of geometries to explore: 

• Affine geometry, Euclidean geometry without distances and angles. 

• Projective geometry, studies properties unchanged by projections, 

 incorporates points at infinity that make space close in on itself. 

• Absolute geometry, Euclidean geometry without any parallel postulate. 

• Euclidean geometry, one line through a point P parallel to line L. 

 Hilbert’s 20 axioms, modern treatment of Euclidean geometry (1899). 

 Tarski’s formulation, from 1959 based on fist-order logic. 

• Non-Euclidean geometry 

 Spherical geometry, based on the surface of a sphere. 

 Elliptic geometry, no lines through P parallel to L.  

 Hyperbolic geometry, more than one line through P not intersecting L. 

Coordinates were introduced in Apollonius’ work on conics where he used 

perpendicular reference lines and measured distances to them. Modern use of 

coordinates dates back to Descartes (1596–1650) (Latinized: Cartesius), 

hence the names Cartesian coordinate system and Cartesian product of sets. 

A× 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} , ℝ𝑛 = {(𝑎1, 𝑎2, … , 𝑎𝑛)|𝑎𝑘 ∈ ℝ, 1 ≤ 𝑘 ≤ 𝑛}
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Another introduction of Descartes is the use of the letters x, y and z for 

unknown variables and a, b and c for parameters or known variables and 

superscripts for exponents. For these and other achievements Descartes has 

become known as the father of analytical geometry. He bridged the gap 

between algebra and geometry. 

Descartes introduced coordinate systems in an appendix titled La Géometrie 

in Discours de la méthode pour bien conduire sa raison, et chercher la vérité 

dans les sciences. The book also contains the famous quotes “Je pense, donc 

je suis” and “Cogito ergo sum”. The book was published in 1637 but it would 

take a long time before Euclidean style geometry lost its grip on mathe-

matical teaching. Euclid’s Elements from 300 BC was still used a textbook in 

the 20th century; partly due to conservatism and partly due to its precise logic 

and austere beauty. 

When Isaac Newton in 1687 published Principia, his work on mechanics and 

gravitation (in Latin: Philosophiae Naturalis Prinicipa Mathematica) he used 

Euclidean style geometry to get the most impact, his own methods with 

differential calculus where probably to unfamiliar for an audience trained in 

classical geometry. Euler’s work made the methods of Leibnitz and Newton 

with analytical geometry and differential calculus the standard of physics. 

ℝ𝑛 has a very natural vector space structure with, 

addition: (𝑎1, 𝑎2, … , 𝑎𝑛) + (𝑏1, 𝑏2, … , 𝑏𝑛) ≡ (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … , 𝑎𝑛 + 𝑏𝑛) 

and scalar multiplication: 𝛼(𝑎1, 𝑎2, … , 𝑎𝑛) ≡ (𝛼𝑎1, 𝛼𝑎2, … , 𝛼𝑎𝑛) 

ℝ𝑛 is sometimes considered as a set and sometimes as a vector space. 

There is also a natural set of vectors from which all others can be expressed: 

𝒆1 = (1,0,0, … ,0)

𝒆𝟐 = (0,1,0, … ,0)
       ⋮
𝒆𝒏 = (0,0,0, … ,1)

} → (𝑎1, 𝑎2, … , 𝑎𝑛) = 𝑎1𝒆𝟏 + 𝑎2𝒆𝟐 +⋯+ 𝑎𝑛𝒆𝒏 

These vectors form a base. The dimension of a space equals the number of 

base vectors. The coefficients of the basis vectors are called coordinates. 

ℝ𝑛 also has a natural dot product, 〈⋅,⋅〉: ℝ𝑛 × ℝ𝑛 → ℝ, it is linear in both slots 

so 〈∑ 𝑎𝑖
𝑛
𝑖=1 𝒆𝒊, ∑ 𝑏𝑗

𝑛
𝑗=1 𝒆𝒋〉 = ∑ 𝑎𝑖𝑏𝑗〈𝒆𝒊, 𝒆𝒋〉1≤𝑖,𝑗≤𝑛 . The natural choice is to set 

〈𝒆𝒊, 𝒆𝒋〉 = 𝛿𝑖,𝑗. With this choice and our original interpretation of dot product 

as 𝒆𝒊 ⋅ 𝒆𝒋 = ‖𝒆𝒊‖ ⋅ ‖𝒆𝒋‖ ⋅ cos 𝜃 we get basis vectors that are of unit length and 

perpendicular to each other. 
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The Euclidean space of two or three dimension on which we place our shapes 

and solids resembles ℝ2 or ℝ3 but there is a subtle difference. The Euclidean 

space consists of points rather than vectors 

and it has no special point like the zero 

vector of a vector space. I will not give the 

formal definition of a Euclidean space 𝔼𝑛, 

it’s a bit technical. From points you get 

displacements and equivalence classes of 

these corresponds to vectors. 

The Cartesian coordinate system can be a great visual aid for gaining mathe-

matical insights that can be used when doing formal proofs and getting a feel 

for functions, by looking at their graphs. 

 

 

 

Fig. 3.6.5  Real Cartesian coordinate systems and graphs of functions 

The coordinate system for one dimension is just the number line. From a 

mathematical viewpoint there is no favored direction but the real world is not 

symmetric. The natural choice is a horizontal line with increasing values in 

the same direction as we read and write. For each new dimension there is a 

new perpendicular direction and a new choice of positive direction. For two 

dimensions this direction is up. Angles are measured positive in a counter-

clockwise direction and negative for clockwise rotations. In three dimensions 

the right hand is used as a model for positive orientation of axis, curl the 

fingers from the 𝑥-arrow towards the 𝑦-arrow and the thumb will point in the 

positive 𝑧-direction. For ℝ𝑛 , 𝑛 ≥ 4 there are no physical objects to guide us 

and symmetry is restored. 

It’s not just physical objects that differentiate between these two possible 

orientations. The laws of nature for elementary particles are asymmetric with 

respect to a change of parity, where all three space axes are reversed (P). If a 

parity transformation is combined with a charge reversal (C) then the laws are 

less asymmetric but still not symmetric (CP violation). Only when charge, 

parity and time are all reversed, do we ‘expect’ the laws of nature to be the 

same. No incidence of CPT-violation has been observed. Classical mechanics 

is symmetric with respect to both parity and time reversal whereas a quantum 

gravity theory such as loop quantum gravity has CPT-violation. 
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Fig. 3.6.4  Real Euclidean space, 𝔼2 
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A general rotation 𝒙 ↦ 𝑅𝑡(𝒙) is characterized by a continuous displacement 

over time, 𝑡 ∈ [0,1] that starts from the identity 𝑅0(𝒙) = 𝒙 with a pivot point 

𝑅𝑡(𝑷) = 𝑷 and fixed relative distances ‖𝒙 − 𝒚‖ = ‖𝑅𝑡(𝒙) − 𝑅𝑡(𝒚)‖. Euler 

showed that in three dimensions the final position is characterized by a 

rotation axis, also known as the Euler axis and a perpendicular rotation plane. 

This is not the case in higher dimensions. 

 

 

 

 

Fig. 3.6.6  Examples of rotations in three and four dimensions. 

Note that three-dimensional rotation vectors 𝝋 do not form a vector space if 

𝝋1 + 𝝋2 means the rotation vector of rotation 𝝋1 followed by rotation 𝝋2. It 

does not commute, 𝝋1 + 𝝋2 ≠ 𝝋2 + 𝝋1: 

90°𝒆1 + 90°𝒆2:  𝑅90°𝒆2 (𝑅90°𝒆1(𝒆3)) = 𝑅90°𝒆2(−𝒆2) = −𝒆𝟐 

90°𝒆2 + 90°𝒆1:  𝑅90°𝒆1 (𝑅90°𝒆2(𝒆3)) = 𝑅90°𝒆1(𝒆1) = 𝒆𝟏 

By forming a rotation plane of two coordinate axes and rotating 180° we can 

change their directions. Repeated use of this in ℝ𝑛 leads to a reduction from 

2𝑛 to 2 rotationally invariant choices of axis directions, positive and negative 

orientation (or handedness). This leads to a classification of manifolds into 

orientable and non-orientable. 

 

 

 

 

Fig. 3.6.7  Non-orientable surfaces, Möbius strips and Klein bottle. 

Handedness of a coordinate system does not change under local movement 

but if transported on a global path, it may return with the opposite 

handedness. A surface or 𝑛-dimensional manifold with this property is non-

orientable. The Möbius strip is non-orientable and one-sided whereas the 

torus is orientable and two-sided, inside and outside. A clock with hands 

going clockwise (CW) will return after one lap on the Möbius strip with 

hands going counterclockwise (CCW). The Möbius strip has a border that is 

a simple and closed curve, when cut along the center line it transforms into a 

band with two full twists instead of the half-twist in the Möbius strip, it has 

become orientable. Check and see! What happens if you cut off center? 
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𝑡 = 0 

𝑡 = 1 

𝑡 = 2 

The Möbius strip was discovered independently by two German mathe-

maticians in 1858, August Möbius and Johann Listing. 

 

 

 

 

 

 

 

 

Fig. 3.6.8  Construction of Möbius strip and Klein Bottle. 

The Möbius strip can be constructed from a rectangle by joining opposite 

edges after a half-twist so that the arrows match each other. The Klein bottle, 

another non-orientable surface is constructed in a similar way. The Klein 

bottle has no border, just like the surface of a sphere. A physical Klein bottle 

with no self-intersection can be made in four dimensions but not in three. 

What becomes of the bottle if you cut it up along cut no.1 and what happens 

if you cut along line no.2? 

Non-orientable manifolds have some curious properties. Imagine the non-

orientable 3-dimensional solid Klein bottle which is the space obtained from 

a solid cylinder by gluing the top to the bottom, not directly which gives a 

solid torus but via a reflection in a line. 

 

 

 

 

 

 

 

 

 

Fig 3.6.9  Non-orientable 3-manifolds, with and without boundary 

A traveler in a non-orientable universe could return home after a long journey 

as a mirror image of himself. A right-handed person would come home as a 

left-handed person and if he or she had a watch with hands, they would by 

others be seen to run counterclockwise. The traveler would only see external 

changes, everybody and everything had turned into their mirror image. 

A 

A 

B 

B 
A A 

A A 

A 

A 

A 

1 2 



Geometry 155 

 

Sphere packing, part 2 

Part 1 of “Sphere packing” covered the 3-dimensional case of finding the 

densest packing of non-overlapping spheres. Generalization is often 

fruitful so how dense can you pack 𝑛-spheres, 𝑆𝑛 = {𝒙 ∈ ℝ𝑛+1|‖𝒙‖ = 𝑟} 

in ℝ𝑛+1. The proportion of space filled by the spheres and their interior in 

a particular arrangement will depend on the volume considered but as the 

volume goes to infinity the density will approach a well-defined limit. 

The 1-dimensional case (𝑛=0) is trivial, with 0-spheres consisting of the 

endpoints of an interval the coverage becomes 100%. The plane case has 

an obvious candidate with centers arranged in a regular triangular pattern. 

The density of this hexagonal packing is 𝜋/2√3 ≈ 0.91. 

It was proved optimal among regular arrangements by 

Lagrange in 1773. A rigorous proof that no irregular 

arrangement could do better was given in 1940 by László  

Tóth. The optimal 3D-pattern from part 1 has a density of 𝜋/3√2 ≈ 0.74. 

A regular arrangement is described by a lattice Λ = {∑ 𝑎𝑖𝒗𝒊
𝑛
𝑖=1 |𝑎𝑖 ∈ ℤ} 

where 𝒗𝒊 form a basis that divides ℝ𝑛 into an array of parallelepipeds or 

fundamental domains. The lattice points have translational symmetries 

that corresponds to the group ℤ𝑛. 

The E8 lattice in ℝ8 and the Leech lattice in ℝ24 are optimal packings 

with extraordinary symmetries. Other dimensions are less symmetrical; 

the densest known packings in some dimensions are not even regular. The 

maximal number of spheres that can touch a given sphere is only known 

for 1, 2, 4, 8 and 24 dimensions. This is the kissing number problem and 

the answers are 2, 6, 12, 24, 240 and 196560. Density decreases with 𝑛, 

the exceptionally effective packing in ℝ24 has density 𝜋2/12! ≈ 0.002. 

The cubic lattice in ℝ𝑛 with ON-base is a rather 

ineffective packing with a surprising property that 

makes it even worse than you might first think. Put 

a sphere in the center (½,½,… ,½) and maximize 

its radius so that it kisses the surrounding spheres. 

Explore how the radius varies with the dimension 

and you will find something quite unexpected. 
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• • • • 

• 
• 



156 Chapter 3.  Basics 

With an orthonormal base 𝒆𝑖 ⋅ 𝒆𝑗 = 𝛿𝑖𝑗 of positive orientation we can express 

vectors with coordinates, calculate dot products, decide the length of a vector 

and determine angles between vectors: 

OP⃗⃗⃗⃗  ⃗ = ∑ 𝑥𝑖𝒆𝑖

𝑛

𝑖 = 1

≡ (𝑥1, 𝑥2, … , 𝑥𝑛) 

𝒙 ⋅ 𝒚 = ∑ 𝑥𝑖

𝑛

𝑖 = 1

𝒆𝑖 ⋅ ∑ 𝑦𝑗

𝑛

𝑗 = 1

𝒆𝑗 = ∑ 𝑥𝑘𝑦𝑘

𝑛

𝑘 = 1

 

‖𝒙‖2 = ∑ 𝑥𝑖
2

𝑛

𝑖 = 1

       cos 𝜃 =
𝒙 ⋅ 𝒚

‖𝒙‖ ⋅ ‖𝒚‖
 

Vector pairs in higher dimension span a space of two dimensions or less 

where angles are a familiar concept. 

In three dimensions another bilinear operator is possible, not into the scalar 

numbers but into the vector space itself ×: (ℝ3, ℝ3) → ℝ3, (𝐴 , 𝐵⃗ ) → 𝐴 × 𝐵⃗ . 

It’s called the vector product. The length of 𝐴 × 𝐵⃗  equals the area spanned by  

𝐴  and 𝐵⃗ , the direction is perpendicular to the plane spanned by 𝐴  and 𝐵⃗  in 

such a way that 𝐴 , 𝐵⃗  and 𝐴 × 𝐵⃗  form a right-handed triple: 

 

 

 

 

 

 

 

Fig. 3.6.9  Vector product 

Two-dimensional spaces can also have a vector product if the space is 

embedded in a 3-dimensional space by adding a third dimension. For an 

orthonormal (ON) basis (𝒆1, 𝒆2, 𝒆3) of positive orientation: 

𝒆1 × 𝒆2 = 𝒆3 𝒆2 × 𝒆3 = 𝒆1 𝒆3 × 𝒆1 = 𝒆2 

 

                             𝒆𝑖 × 𝒆𝑗 = ∑ 𝜀𝑖𝑗𝑘

𝑛

𝑘 = 1

𝒆𝑘

𝐵⃗  
𝐴 × 𝐵⃗  

𝐴  

‖𝐴 × 𝐵⃗ ‖ 

𝒆1 

𝒆2 

𝒆3 
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𝐴𝑟𝑒𝑎 = ‖𝒖 × 𝒗‖ 2Τ  

𝒗 

𝒖 

Areas of triangular regions 

given in coordinate form 

are now easy to calculate. 

𝒆1 

𝒆2 
𝒆3 

The Levi-Civita symbol 𝜀𝑖1𝑖2…𝑖𝑛 with 𝑛 indices, 𝑖𝑘 ∈ {1,2, … , 𝑛} is defined by 

𝜀12…𝑛 = 1, two equal indices make it zero and by being totally antisymmetric 

under permutation of the indices: 

𝜀𝑖1𝑖2…𝑖𝑛 = (−1)
𝑝𝜀12…𝑛 ,  𝑝 = number of interchanges to unscramble 𝑖1… 𝑖𝑛. 

𝒙 × 𝒚 =∑𝑥𝑖𝒆𝑖

3

𝑖=1

×∑𝑦𝑗𝒆𝑗

3

𝑗=1

= ∑ 𝜀𝑖𝑗𝑘𝑥𝑖𝑦𝑗𝒆𝑘

3

𝑖,𝑗,𝑘=1

 

(𝑥1, 𝑥2, 𝑥3) × (𝑦1 , 𝑦2, 𝑦3) = (𝑥2𝑦3 − 𝑥3𝑦2 , 𝑥3𝑦1 − 𝑥1𝑦3 , 𝑥1𝑦2 − 𝑥2𝑦1) 

 

 

 

 

 

 

 

 

 

 

Vectors, dot products and vector products are essential in physics, with or 

without coordinates. Most basic is the positional vector 𝒓, with coordinates 

(𝑥, 𝑦, 𝑧) in some operationally defined coordinate system. A true vector is 

independent of the coordinate system. It is not just a collection of three 

numbers, the numbers must transform in well-defined ways when looking at 

the vector from different reference frames. 

 

 

 

 

Fig. 3.6.10  Different reference frames, one rotated and one moving away. 

For reference frames in relative motion this transformation will involve time. 

In special relativity position vectors are no longer true vectors; time must be 

included as a fourth component to make a space-time vector (𝑥, 𝑦, 𝑧, 𝑡) or as 

a pre-component in a time-space vector (𝑡, 𝑥, 𝑦, 𝑧)~(𝑥0, 𝑥1, 𝑥2, 𝑥3). These 4-

dimensional vectors are called four-vectors or Lorentz vectors. Magnitudes 

should always be independent of the reference frame. For a 4-vector: 

‖𝒙‖2 = −𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2  or  𝑥0
2 − 𝑥1

2 − 𝑥2
2 − 𝑥3

2  depending on taste.

The volume of a parallelepiped spanned by 𝒂, 𝒃, 𝒄 is: 

‖𝒄 ⋅ (𝒂 × 𝒃)‖ = ‖𝒃 ⋅ (𝒄 × 𝒂)‖ = ‖𝒂 ⋅ (𝒃 × 𝒄)‖ 
𝒂 𝒃 

𝒄 

𝒆1 

𝒆2 

𝒆3 𝒗 



158 Chapter 3.  Basics 

Force on charge 𝑞 

with velocity 𝒗 

in E-M fields 𝑬 and 𝑩: 

𝑭 = 𝑞(𝑬 + 𝒗 ×𝑩) 

3-vectors from classical physics where space and time are separated, ℝ3 × ℝ: 

 Translation Rotation Vector fields 

 Linear- Angular- defined everywhere 

Displacement: ∆𝒓 ∆𝝋 Electric: 𝑬(𝒓, 𝑡) 

Velocity: 𝒗 =
∆𝒓

∆𝑡
 𝝎 =

∆𝝋

∆𝑡
 Magnetic: 𝑩(𝒓, 𝑡) 

Acceleration: 𝒂 =
∆2𝒓

(∆𝑡)2
=

∆𝒗

∆𝑡
 𝜶 =

∆𝝎

∆𝑡
  

Jerk: 𝒋 =
∆3𝒓

(∆𝑡)3
=

∆𝒂

∆𝑡
 𝜻 =

∆𝜶

∆𝑡
  

Momentum: 𝒑 = 𝑚𝒗 𝑳 = 𝐼𝝎 

Force/Torque: 𝑭 =
𝑑𝒑

𝑑𝑡
 𝝉 =

𝑑𝑳

𝑑𝑡
 

These vectors are classified into one of two groups, polar/true vectors and 

axial/pseudo vectors depending on how they behave under reflection in a 

plane. The linear and 𝑬 vectors are true vectors whereas the angular and 𝑩 

vectors are pseudo vectors. They all transform as vectors under rotation but 

the pseudo-vector coordinates get an extra sign change under reflection. 

 

 

 

 

 

 

Fig. 3.6.11  Vectors behaving differently under reflection. 

The Cartesian coordinates system is not the only way to express points in ℝ𝑛. There 

are alternative coordinate systems better suited for problems with special symmetries. 

 

 

 

 

 

 

 

 

 

 

 

Spherical coordinates suffer from variation in conventions. In physics both the letters 

and the order of the polar and azimuth angles are interchanged so that the spherical 

harmonics 𝑌𝑙
𝑚(𝜃, 𝜑) of physics have 𝜃 ↔ polar angle and 𝜑 ↔ azimuth angle. 

Mirror Mirror 

Axial vectors Polar vectors 

𝑟 

𝜃 

𝑥 

𝑦 

Skewed (𝑥, 𝑦) 

coordinates, 

Non-orthogonal 

Polar (𝑟, 𝜃) 

coordinates 

{
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

 

Cartesian (𝑥, 𝑦, 𝑧) 

coordinates 
Cylindrical (𝜌,𝜑, 𝑧) 

coordinates 

{

𝑥 = 𝜌 cos𝜑

𝑦 = 𝜌 sin𝜑
𝑧 = 𝑧

 

Spherical (𝑟, 𝜃, 𝜑) 

coordinates 

{

𝑥 = 𝑟 sin𝜑 cos𝜃
𝑦 = 𝑟 sin𝜑 sin 𝜃
𝑧 = 𝑟 cos𝜑

 

𝑦 

𝑥 

𝑥 

𝑦 

𝑧 
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{
  
 

  
 

𝑥1= 𝑟 cos𝜑1
𝑥2= 𝑟 sin 𝜑1 cos𝜑2
𝑥3= 𝑟 sin 𝜑1 sin𝜑2 cos𝜑3
 ⋮

𝑥𝑛−2= 𝑟 sin 𝜑1⋯sin𝜑𝑛−3 cos 𝜑𝑛−2
𝑥𝑛−1= 𝑟 sin 𝜑1⋯sin𝜑𝑛−3 sin𝜑𝑛−2 sin 𝜃
𝑥𝑛= 𝑟 sin 𝜑1⋯sin𝜑𝑛−3 sin𝜑𝑛−2 cos 𝜃

 

Elliptic coordinates 

 

{
𝑥 = 𝑎 cosh 𝜇 cos 𝜈
𝑦 = 𝑎 sinh 𝜇 sin 𝜈

↔   𝑥 + 𝑖𝑦 = 𝑎 cosh(𝜇 + 𝑖𝜈) 

 

𝜇 ≥ 0:  
𝑥2

𝑎2 cosh2 𝜇
+

𝑦2

𝑎2 sinh2 𝜇
= cos2 𝜈 + sin2 𝜈 = 1 

Coordinate curves of fixed 𝜇 are ellipses. 

 

0 ≤ 𝜈 < 2𝜋:  
𝑥2

𝑎2 cos2 𝜈
−

𝑦2

𝑎2 sin2 𝜈
= cosh2 𝜇 − sinh2 𝜇 = 1 

Coordinate curves of fixed 𝜈 are hyperbolae. 

Planar Curvilinear 

O
rt

h
o
g
o
n

al
 

S
k

ew
ed

 

Spherical coordinates generalize to 𝑛 dimensions (𝑟, 𝜑1, 𝜑2, … , 𝜑𝑛−2, 𝜃) 

where 𝜑𝑘 ∈ [0, 𝜋] is the polar angle with the 𝑥𝑘-axis and 𝜃 ∈ [0,2𝜋) is the 

azimuthal angle in the (𝑥𝑛−1, 𝑥𝑛)-plane, so called hyperspherical coordinates. 

 

 

 

 

 

 

 

𝑥1 

𝑥3, … , 𝑥𝑛 

𝜑1 
𝜑2 

𝑥2 

𝒂 −𝒂 

Coordinates can be planar, 

curvilinear, orthogonal or 

skewed depending on the 

properties of the (𝑛 − 1)- 

dimensional coordinate 

“surfaces” where one 

coordinate is held fixed. 
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The coordinate systems shown so far have singled out a special point as the 

origin, often denoted O. The Euclidean space 𝔼𝑛 has no such special point. 

Other such examples are the projective spaces consisting of the set of lines 

through the origin of a vector space. For ℝ𝑛 and ℂ𝑛 they are ℝℙ𝑛 and ℂℙ𝑛. 

ℝℙ2, the 2-dimensional real projective plane can be seen as: 

• All lines passing through the origin in ℝ3. 

• The surface of a sphere with antipodal points identified. 

• Equivalence classes: (ℝ3 ∖ {𝟎}) ~  with 𝒙 ∼ 𝒚 iff 𝒙 = 𝜆𝒚 Τ , 𝜆 ∈ ℝ ∖ {0}. 

 

 

 

 

 

 

Fig. 3.6.12  Antipodal points on a globe and the surface of ℝℙ2. 

Projective spaces can be equipped with homogeneous coordinates, one more 

coordinate than the dimension. The equivalence class of (𝑥, 𝑦, 𝑧) in ℝℙ2 is 

denoted [𝑥: 𝑦: 𝑧] = [𝑥/𝜆: 𝑦/𝜆: 𝑧/𝜆]. Such coordinates were introduced 1827 

by August Möbius the inventor of the Möbius strip. ℝℙ2 can be construed as 

a Möbius strip where the single edge has been glued to a disk. It takes four 

dimensions to show the surface without self-intersection. The real projective 

plane is an example of a compact (finite area, no boundary), non-orientable, 

2-dimensional surface. ℝℙ2𝑘 is non-orientable whereas ℝℙ2𝑘+1 is orientable, 

ℝℙ1 is the equivalent to a circle. Projective spaces are the natural arena for 

projective geometry. 

Renaissance art is full of projective geometry. A projection from a 3D-scene 

to the painter’s eye brings the scenery into a 2D-image. Parallel lines on the 

ground that goes inwards meet at a horizontal line. Projective geometry 

studies those properties that are unaffected by projective transformations. 

Distances and angles change but collinearity and cross-ratio for collinear 

points (‖AC̅̅̅̅ ‖ ⋅ ‖BD̅̅ ̅̅ ‖)/(‖AD̅̅ ̅̅ ‖ ⋅ ‖BC̅̅̅̅ ‖) stay the same. 

 

 

 

 

 

Fig 3.6.13  Perspective projection in Renaissance art
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Fig. 3.6.14  Projective plane, straight lines, great circles and projective geometry. 

Projecting from the center of sphere 𝑆𝑛 through the lower hemisphere onto 

the Euclidean space 𝔼𝑛 on which the sphere stands shows a link between 𝔼𝑛 

and the projective space ℝℙ𝑛. The projective space is a compactification of 

the Euclidean space, accomplished by adding points at infinity. 

ℝℙ𝑛 = ℝ𝑛 ⊔ ℝ𝑛−1 ⊔⋯⊔ ℝ1 ⊔ ℝ0⏟              

Points at ∞ = ℝℙ𝑛−1
    (⊔ is the disjoint union) 

Straight lines on the plane correspond to great circles on the sphere. Every 

straight line has a unique point at infinity where its great circle crosses the 

equator and parallel lines share a common point at infinity. 

With the unit sphere centered at 0 and the Euclidean plane at 𝑧 = −1 we get 

homogeneous coordinates [𝑥: 𝑦: −1] for the points in 𝔼2. A line through the 

center [0: 0: −1], 𝑎𝑥 + 𝑏𝑦 = 0 ⇔ (𝑥, 𝑦) ⋅ (𝑎, 𝑏) = 0 ⇔ (𝑥, 𝑦) ⊥ (𝑎, 𝑏) has 

points parametrized as (𝑥, 𝑦) = 𝑡 ⋅ (𝑏, −𝑎). In homogeneous coordinates this 

becomes [𝑏𝑡: −𝑎𝑡: −1] = [𝑏:−𝑎:−1/𝑡] which goes to [𝑏:−𝑎: 0] as 𝑡 goes to 

infinity. Points at infinity are those [𝛼: 𝛽: 𝛾] with 𝛾 = 0 and (𝛼, 𝛽) ≠ (0,0). 

Formulas and theorems are often more symmetric and simple when expressed 

in projective geometry. In ℝℙ2 every pair of unique lines have a unique 

intersection; no exception is needed for parallel lines. Figure 3.38 shows two 

theorems that belong to projective geometry. The first is Pappus’s theorem on 

collinearity from page 73. The second is Pascal’s theorem, a generalization of 

Pappus’s theorem. It is also known as the Hexagrammum Mysticum Theorem. 

ℝℙ2 = ℝ2 ⊔ ℝ1 ⊔ℝ0 Points at 

infinity, 𝑧=0 

𝑥 

𝑦 

𝑧 

𝔼2 
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〈𝑎: 𝑏: 𝑐〉 

𝑥 

𝑦 

P 

O 

𝑣  

𝑤⃗⃗  

𝑛⃗  𝑟  

𝜃 

𝑟0⃗⃗  ⃗ 

The Hexagrammum Mysticum Theorem states that if six arbitrary points in 

arbitrary order are chosen on a conic (ellipse, parabola or hyperbola) and 

joined into a hexagon then the three points where opposite sides meet 

(extended if necessary) are collinear. A degenerate conic with two lines gives 

Pappus’s theorem. 

Other examples of homogeneous coordinates are barycentric coordinates and 

trilinear coordinates. The latter are based on a given triangle, ABC: 

 

 

 

 

 

 

 

 

 

With a coordinate system in place the scene is set for analytic geometry, 

also known as coordinate geometry. Analytic geometry can turn a geometric 

problem into an algebraic problem. It is a tool of huge importance for physics 

and engineering but it can also be a temptation and a menace that turns an 

elegant and simple proof from synthetic geometry into a monstrosity with 

complicated formulas that hide all conceptual clarity. 

In the rest of this section Cartesian coordinates (𝑥, 𝑦, 𝑧 … ) or (𝑥1, 𝑥2, … ) will 

be assumed. Curves and surfaces can be specified with equations and in-

equalities. For 𝑘 equations 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = 0, 𝑖 ∈ 𝐼 = {1, … , 𝑘} there is a 

solution set {𝒙 ∈ ℝ𝑛|𝑓𝑖(𝒙) = 0 ∧ 𝑖 ∈ 𝐼}, built from intersections and often 

an object of 𝑛 − 𝑘 dimensions (the number of parameters needed to describe 

the object). Each new equation reduces the dimension by one unit. 

〈𝑎: 𝑏: 𝑐〉 is the point P, with distances 

𝑎, 𝑏 and 𝑐 from sides BC, CA and AB 

respectively. Only their ratios matter, 

〈𝜆𝑎: 𝜆𝑏: 𝜆𝑐〉  ∧ 𝜆 > 0 is the same point. 

Orthocenter = 〈1/ cos A ∶ 1/ cosB ∶ 1/ cos C〉 

Incenter = 〈1 ∶ 1 ∶ 1〉  A=〈1: 0: 0〉  A-excenter = 〈−1: 1: 1〉 

Centroid = 〈1/𝑎 ∶ 1/𝑏 ∶ 1/𝑐〉  B=〈0: 1: 0〉  B-excenter = 〈1: −1: 1〉 

Circumcenter = 〈cos A ∶ cos B ∶ cos C〉  C=〈0: 0: 1〉  C-excenter = 〈1: 1: −1〉 

  

Coordinate equation for a line in the plane: 

𝑟 = OP⃗⃗⃗⃗  ⃗ + 𝑡 ⋅ 𝑣  , 𝑡 ∈ ℝ   

𝑤⃗⃗ ↔ 𝑒𝑖𝜃(𝑣𝑥 + 𝑖𝑣𝑦) 

𝑛⃗ ↔ 𝑒𝑖𝜋/2⏟
𝑖

(𝑣𝑥 + 𝑖𝑣𝑦) ↔ (−𝑣𝑦, 𝑣𝑥) 

𝑛⃗ = (𝑎, 𝑏) , 𝑟0⃗⃗  ⃗ = (𝑥0, 𝑦0) , 𝑟 = (𝑥, 𝑦) 

𝑛⃗ ⋅ (𝑟 − 𝑟0⃗⃗  ⃗) = 0 ⇔ 

𝑎𝑥 + 𝑏𝑦 = 𝑎𝑥0 + 𝑏𝑦0 

𝑎𝑥 + 𝑏𝑦 = 𝑐  or  𝑦 = 𝑘𝑥 +𝑚 if 𝑏 ≠ 0 
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• 𝑑 = 0: Parabola 

• 𝑑 < 0: Ellipse 

• 𝑑 > 0: Hyperbola 

 

 

 

 

 

 

The intersection of three planes is found from a system of linear equations. 

{

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎21𝑥2 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

 ↔  

𝑎11 𝑎12 𝑎13 𝑏1
𝑎21 𝑎22 𝑎23 𝑏2
𝑎31 𝑎32 𝑎33 𝑏3

  ↔

𝑎11́ 𝑎12́ 𝑎13́ 𝑏1́
0 𝑎22́ 𝑎23́ 𝑏2́
0 0 𝑎33́ 𝑏3́

 

The primed symbols can be found by Gaussian elimination, named after 

C.F. Gauss from the 19th century. The procedure was used in China already in 

the 2nd century. The method reduces the original equations to equations with 

the same set of solutions. The three operations below are used repeatedly to 

get zeros in the lower left triangle which makes the system easy to solve. 

Solve the equations from the bottom up and introduce free parameters (𝑠, 𝑡) 

for variables when possible. The solution set can be empty, a unique point or 

it can be a one- or two-dimensional Euclidean subspace, given by a particular 

solution (𝒖) and vectors (𝒗,𝒘) that span the space. 

• Swap positions of two rows. 

• Multiply a row by a scalar≠0. 

• Add a scalar multiple of one 

row to another row. 

 

 

 

Fig. 3.39  Different solution sets for three planes or system of linear equations. 

Lines, planes and hyperplanes are described by polynomials of degree one: 

∑ 𝑃𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑅 = 0. The next objects to study are those described by poly-

nomials of degree two: ∑ 𝑄𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑖,𝑗=1 + ∑ 𝑃𝑖𝑥𝑖

𝑛
𝑖=1 + 𝑅 = 0. In ℝ2 these are, 

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0. They are all curves formed by the 

intersection of a plane and a double-cone. What conic section the equation 

describes is decided by the discriminant 𝑑 = 𝐵2 − 4𝐴𝐶. 

𝑦 

𝑥 

𝑧 

P 

𝑟0⃗⃗  ⃗ 𝒆1 

𝒆2 

O 

𝑛⃗  

𝑟  

Coordinate equation for a plane in space: 

𝑟 = OP⃗⃗⃗⃗  ⃗ + 𝑡1𝒆1 + 𝑡2𝒆2 , 𝑡1, 𝑡2 ∈ ℝ  

𝑛⃗ = 𝒆1 × 𝒆2 = (𝑎, 𝑏, 𝑐) 

𝑟0⃗⃗  ⃗ = (𝑥0, 𝑦0, 𝑧0) , 𝑟 = (𝑥, 𝑦, 𝑧)  

𝑛⃗ ⋅ (𝑟 − 𝑟0⃗⃗  ⃗) = 0 ⇔ 

𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0) = 0 

ax + by + cz = d 

→ 

𝒙 ∈ ∅ or
𝒙 ∈ {𝒖} or

𝒙 ∈ {𝒖 + 𝑠 ⋅ 𝒗|𝑠 ∈ ℝ} or

𝒙 ∈ {𝒖 + 𝑠 ⋅ 𝒗 + 𝑡 ⋅ 𝒘|𝑠, 𝑡 ∈ ℝ}
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The algebraic equation of degree two in three dimensions leads after some 

suitable change of variables to a group of different basic forms with center at 

the origin and coordinate axis along the perpendicular principal axes. Below 

are some examples of such quadric surfaces of varying generality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7 Calculus 

In this section of basic mathematics we will look into calculus, basic analysis. 

Later chapters will be devoted to specific branches of mathematics, the type 

that you could meet in a typical university course such as algebra number 

theory, and complex analysis. We will then have the opportunity to return to 

our original problem of decimal expansion. 

3.7.1 Limits 

This is not our first encounter with limits; on page 95 we used it to enlarge 

the domain of numbers from rational numbers to real numbers. A strict 

definition of limits is essential for analysis. Without rigor things can easy go 

astray as they often did in the early days of analysis. 

The first to propose limits instead of infinitesimals as the basis for analysis 

was d’Alembert (1717–1883). General recognition of the limit concept came 

with its appearance in the very influential textbook “Cours d’Analyse” from 

1821 by Augustin-Louis Cauchy. The concept was still only formulated in 

words. The formal definition with 𝜖 and 𝛿 that many students of mathematics 

has struggled with derives from Bernard Bolzano (1781–1848). The limit 

definition given here comes from Karl Weierstrass (1815–1897). He also 

introduced the notation lim𝑥→𝑥0  which Hardy modified by putting the arrow 

below lim in another classic “A Course of Pure Mathematics” from 1908. 
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Let us assume a function 𝑓 with range in ℝ and domain in ℝ that contains a 

punctured neighborhood of 𝑥0 ( 0 < |𝑥 − 𝑥0| < 𝑑 ). 

Definition. 

𝑓 has the limit 𝑦0 in 𝑥0 if for every 𝜖 > 0 there is a 𝛿 > 0 such that: 

0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − 𝑦0| < 𝜖  

This is written as lim
𝑥→𝑥0

𝑓(𝑥) = 𝑦0 

Note that the function can have any value in 𝑥0 or not even be defined in 𝑥0. 

This definition has a natural generalization to any function 𝑓: 𝑋 → 𝑌 with 

range and domain in metric spaces, just replace |𝑝 − 𝑞| with 𝑑(𝑝, 𝑞), the 

distance between 𝑝 and 𝑞 in the given metric space. For normed vector 

spaces such as ℝ𝑛 with ‖𝑥 ‖2 = ∑ 𝑥𝑖
2𝑛

𝑖=1  we have 𝑑(𝑝 , 𝑞 ) = ‖𝑞 − 𝑝 ‖. If a 

limit exists it is unique since different points have disjoint neighborhoods. 

Based on the distance function and its properties (p. 95) we can form a series 

of useful notions for sets in metric spaces: 

Interval: A connected set on ℝ, with endpoints [𝑎, 𝑏] ≡ {𝑥|𝑎 ≤ 𝑥 ≤ 𝑏} or

 without endpoints ]𝑎, 𝑏[ ≡ (𝑎, 𝑏) ≡ {𝑥|𝑎 < 𝑥 < 𝑏} , 𝑎 and 𝑏 can be ±∞. 

 Semi-open intervals like [𝑎, 𝑏[ or (−∞, 𝑏 have only one endpoint. 

 Note that open ends has two alternative notations, not to be used together. 

Ball: Part of a metric space that has a center 𝑝 and a radius 𝑟. A ball can be 

 open 𝐵𝑟(𝑝) = {𝑥|𝑑(𝑥, 𝑝) < 𝑟)} or closed 𝐵𝑟[𝑝] = {𝑥|𝑑(𝑥, 𝑝) ≤ 𝑟)}. 

Sphere: The surface or boundary of a ball. The 𝑛-sphere of radius 𝑟 may be 

 defined as an embedding in ℝ𝑛+1, 𝑆𝑛 = {𝑥 ∈ ℝ𝑛+1: ‖𝑥‖ = 𝑟}. 

Interior: Interior point 𝑝 of a set 𝒮 in a metric space is a point with an open 

 ball 𝐵𝑟(𝑝) ⊆ 𝒮. The interior of 𝒮=int(𝒮) = 𝒮0 is its interior points. 

Open set: A set 𝒮 in which each point is an interior point, 𝒮 = 𝒮0. 

Closed set: A set 𝒮 whose complement is an open set. 

Neighborhood of a point 𝑝 in a metric space ℳ is a set 𝒱 that includes an 

 open set 𝒰 containing 𝑝. It’s a deleted or punctured neighborhood if 𝑝 

 is excluded from the neighborhood. 

Limit point of a set 𝒮 is a point 𝑝 such that every neighborhood of 𝑝 

 contains at least one point of 𝒮 other than 𝑝 itself. 

Closure of a set 𝒮 is the set plus its limit points=cl(𝒮) = 𝒮̅. 

Boundary of a set 𝒮 is the set of points called boundary points. These are 

 inside the closure of 𝒮 but outside the interior of 𝒮. It is denoted by 𝜕𝒮.  

Dense set: A subset 𝑆 of ℳ is dense if every point of ℳ belongs to 𝒮 

 or is a limitpoint of 𝒮. ℚ and ℝ ∖ ℚ are both dense in ℝ. 

Isolated point of a subset 𝒮 is a point in 𝒮 with a neighborhood that does 

 not contain any other point of 𝒮. 

Discrete set: A set consisting only of isolated points.
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There is an equivalent definition of limit in terms of neighborhoods and open 

sets that don’t use the language of 𝜖 and 𝛿: 

Definition. 

𝑓 has the limit 𝑦0 in 𝑥0 if for every neighborhood 𝒱 of 𝑦0 

there is a punctured neighborhood 𝒰 of 𝑥0 s.t. 𝑓(𝒰) ⊆ 𝒱. 

This definition of limits can be generalized beyond the domain of metric 

spaces where distance functions generate open sets. A more general approach 

is to start from a collection of open sets that satisfies certain properties that 

capture our idea of how open sets should behave. In this more general setting 

no distances are needed and might not even be possible to define and still we 

could speak of limits and continuity. This is the foundation of topology and it 

will be dealt with in another chapter. 

With minor alterations in the (𝜖, 𝛿)-definition of 𝑓:ℝ → ℝ there can be limits 

when approaching from the “left” 𝑥 → 𝑎−, from the “right” 𝑥 → 𝑎+, going 

towards −∞ or +∞ or when the limit goes to −∞ or +∞. Sequences based 

on functions 𝑓: ℤ+ → ℝ have limits defined in a similar manner.  

Examples. 

 

 

 

 

 

 

 

lim
𝑥→𝑎−

𝑓(𝑥) = ∞ ↔ ∀𝑀∃𝛿 > 0 ∶  𝑎 − 𝛿 < 𝑥 < 𝑎 ⇒ 𝑓(𝑥) > 𝑀 

 

lim
𝑥→−∞

𝑓(𝑥) = 𝑏 ↔  ∀𝜖 > 0∃𝑚 ∶  𝑥 < 𝑚 ⇒ |𝑓(𝑥) − 𝑏| < 𝜖 

 

lim
𝑛→∞

𝑎𝑛 = 𝑏  ↔  ∀𝜖 > 0∃𝑁 ∶   𝑛 > 𝑁 ⇒ |𝑎𝑛 − 𝑏| < 𝜖 

Infinity symbols are usually a sign of an underlying limiting process. 

∑𝑎𝑘

∞

𝑘=1

= 𝑆  ↔   lim
𝑛→∞

∑𝑎𝑘

𝑛

𝑘=1⏟  
𝑆𝑛

= 𝑆 ↔   ∀𝜖 > 0∃𝑁 ∶ 𝑛 > 𝑁 ⟹  |𝑠𝑛 − 𝑆| < 𝜖 

Irrational numbers like 𝜋 = 3.14159… can be seen as limits in this way: 

𝐴 = 𝑎0. 𝑎1𝑎2… = 𝑎0 +∑𝑎𝑛 ⋅ 10
−𝑛

∞

𝑛=1

𝑥 

𝑦 

𝑥0 

𝑦0 

𝑓 𝑓(𝒰) 

𝒰 

𝒱 
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Proving that a limit exists usually means finding an m, N or 𝛿 for a given 𝜖 

that make the final equality true, i.e. a function 𝑚(𝜖), 𝑁(𝜖) or 𝛿(𝜖). 

Example. 

Show that lim
𝑥→ 4⏟

𝑥0

𝑥4 − 1

𝑥 − 1⏟  
𝑓(𝑥)

= 4⏟
𝑦0

 

𝑓(𝑥) =
𝑥4 − 1

𝑥 − 1
= (𝑥2 + 1)(𝑥 + 1) if  𝑥 ≠ 1 

|𝑓(𝑥) − 𝑦0| = |𝑥
3 + 𝑥2 + 𝑥 − 3| = |𝑥 − 1| ⋅ |𝑥2 + 2𝑥 + 3| 

Choose a 𝐾 ∈ ℝ+, 0 < |𝑥 − 1| < 𝐾 ⟹ ∃𝑀 ∈ ℝ+ ∶  |𝑥2 + 2𝑥 + 3| < 𝑀 ⟹ 

0 < |𝑥 − 1| < min (𝐾,
𝜖

𝑀
)

⏟      
𝛿

⟹ |𝑓(𝑥) − 𝑦0| < 𝜖    𝛿(𝜖) = min (𝐾,
𝜖

𝑀
)        ∎ 

Limits of real-valued functions obey some useful theorems. 

Theorem. (Algebraic limit theorem) 

If  lim
𝑥→𝑐

𝑓(𝑥) = 𝐴 and lim
𝑥→𝑐

𝑔(𝑥) = 𝐵  then 

lim
𝑥→𝑐
(𝑓(𝑥) + 𝑔(𝑥)) = 𝐴 + 𝐵                 lim

𝑥→𝑐
(𝑓(𝑥) − 𝑔(𝑥)) = 𝐴 − 𝐵 

lim
𝑥→𝑐
(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝐴 ⋅ 𝐵                     lim

𝑥→𝑐
(𝑓(𝑥)/𝑔(𝑥)) = 𝐴/𝐵  if 𝐵 ≠ 0 

Proof. ( of the first statement, the others are left as exercises ) 

For a given 𝜖′ > 0 there is 𝛿1 > 0 and 𝛿2 > 0 s.t. 

0 < |𝑥 − 𝑐| < 𝛿1 ⇒ |𝑓(𝑥) − 𝐴| < 𝜖′

0 < |𝑥 − 𝑐| < 𝛿2 ⇒ |𝑔(𝑥) − 𝐵| < 𝜖′
} ⟹ (by triangle inequality) 

0 < |𝑥 − 𝑐| < min(𝛿1, 𝛿2) ⇒ |(𝑓(𝑥) − 𝐴) + (𝑔(𝑥) − 𝐵)| < 2𝜖′ 

For any 𝜖 > 0, let 𝜖′ =
𝜖

2
 then we can use 𝛿(𝜖) =  min(𝛿1, 𝛿2). ∎ 

The rules work for one-sided limits, for 𝑐 = ±∞ and for infinite limits with 

some extensions of arithmetic such as 𝐴 +∞ = ∞ if 𝐴 ≠ −∞, 𝐴 ⋅ ∞ = ∞ if 

𝐴 > 0 and 𝐴/∞ = 0 if 𝐴 ≠ ±∞. 

Theorem. (Limit of composite function) 

lim
𝑥→𝑐

𝑔(𝑥) = 𝐴 ∧ lim
𝑥→𝐴

𝑓(𝑥) = 𝐵 ⟹ lim
𝑥→𝑐

𝑓(𝑔(𝑥)) = 𝐵 

For this implication to be true at least one of two extra conditions must hold. 

𝑓(𝐴)=𝐵 (𝑓 continuous at 𝑥 = 𝐴) or 𝑔(𝑥) ≠ 𝐴 in a deleted neighborhood of c. 
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Theorem. (Squeeze theorem) 

If 𝑓, 𝑔 and ℎ are three functions with 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ(𝑥) in a punctured 

neighborhood of 𝑐 and lim
𝑥→𝑐

𝑔(𝑥) = lim
𝑥→𝑐

ℎ(𝑥) = 𝐴 then 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐴 

 

A function 𝑓:ℝ → ℝ is continuous if its graph can be drawn from −∞ to +∞ 

without lifting the pen, which means that lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) for any 𝑐 ∈ ℝ. 

With the convention that a function is continuous in isolated points of its 

domain the general definition for a continuous function 𝑓: 𝑋 → 𝑌 between 

two metric spaces is. 

Definition. 

𝑓 is continuous if lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐)  for every limit point 𝑐 in D𝑓 .  

The set of continuous mappings from 𝑋 to 𝑌 is written 𝐶(𝑋, 𝑌) and for 

continuous functions 𝑓:ℝ → ℝ the usual notation is 𝑓 ∈ 𝐶0(ℝ). 𝐶𝑘(ℝ) is for 

functions differentiable 𝑘 times and with 𝑓𝑘 ∈ 𝐶0(ℝ). Continuous functions 

preserves limits of sequeces, lim
𝑛→∞

𝑥𝑛 = 𝑐 ⇒ lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓(𝑐). 

With these rules and starting from the continuity of 𝑓(𝑥) = 𝐶 and 𝑔(𝑥) = 𝑥 

it follows that the polynomials 𝑃(𝑥) = ∑ 𝑎𝑛𝑥
𝑛𝑁

𝑛=0  and the rational functions 

ℎ(𝑥) = 𝑃(𝑥)/𝑄(𝑥) are continuous functions ( 𝐷ℎ = {𝑥 ∈ ℝ|𝑄(𝑥) ≠ 0} ).  

In terms of neighborhood and sets a function 𝑓: 𝑋 → 𝑌 is continuous if the 

preimage 𝑓−1(𝑉) ≔ {𝑥 ∈ 𝑋|𝑓(𝑥) ∈ 𝑉} of every open set 𝑉 is an open set. 

This definition is at the core of topology where distance is secondary and 

where continuity will depend on the choice of open sets. 

A function 𝑓:ℝ → ℝ can fail to be continuous at a point 𝑐 in different ways. 

Discontinuities can be classified as removable, jump-type or essential. If 

lim
𝑥→𝑐−

𝑓(𝑥) = lim
𝑥→𝑐+

𝑓(𝑥) ≠ 𝑓(𝑐) it can be removed by redefining 𝑓(𝑐), Not to 

be confused with removable singularities where 𝑐 in not part of 𝐷𝑓. In a jump 

discontinuity the one-sided limits exist, they are finite but unequal. 

Remaining cases are essential discontinuities. 

     

c 
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𝑦 = 𝑥 +
1

𝑥
 

The points of discontinuity need not be isolated points.  

 

 

 

 

 

 

 

 

 

 

 

Asymptotic lines of a curve are defined with 

limits. As the asymptote approaches infinity 

the distance between the line and the curve 

approaches zero. Asymptotes are horizontal, 

vertical or oblique. They can also be defined 

as lines tangent to a curve at infinity. 

A proper understanding of limits would resolve many of Zeno’s paradoxes, at 

least for a mathematician even though a philosopher might disagree. A 

conundrum that might have interested Zeno is whether there is a continuous 

path that crosses every point in a square or in mathematical term is there a 

continuous surjective function from the unit interval onto the unit square. The 

answer is yes. They are called space-filling curves. In 1890 Giuseppe Piano 

became the first to discover such a curve. 

Another space-filling curve is the Hilbert curve, constructed as the limit of a 

sequence of curves (𝐻𝑛)𝑛=1
∞  where each curve is a mapping from [0,1] into 

[0,1]2 and a simple modification of the previous curve. The length of 𝐻𝑛(𝑡) 

is 2𝑛 − 1/2𝑛 which makes the length of 𝐻(𝑡) infinite. 

𝐻(𝑡) = lim
𝑛→∞

𝐻𝑛(𝑡) 

 

 

 

 

 

 

 

 

 

Fig 3.7.1  Iterates of the Hilbert curve 𝐻, first 𝐻1, 𝐻2 and 𝐻3 then 𝐻6.  

Dirichlet’s function: 

𝐷(𝑥) = {
1 if 𝑥 ∈ ℝ ∖ ℚ
0 if 𝑥 ∈ ℚ

 

𝐷 is nowhere continuous. 

Thomae’s function: 

𝑓(𝑥) = {
1 if 𝑥 = 0
1/𝑞 if 𝑥 = 𝑝/𝑞  in reduced form 
0 if 𝑥 ∈ ℝ ∖ ℚ 

 

𝑓 is continuous in ℝ ∖ ℚ and discontinuous in ℚ. 

0 1 
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Before we enter into derivation it is time for a closer look at the connection 

between decimal expansion and real numbers and between real numbers and 

continuous functions. 

An upper bound of a set 𝑆 that is a subset of a partially ordered set (𝑃, ≤) is 

an element 𝑢 ∈ 𝑃 s.t. 𝑢 ≥ 𝑠 for every 𝑠 ∈ 𝑆. Lower bounds are defined 

similarly. A defining property of the real numbers known as the completeness 

axiom or the least-upper-bound property (LUB). 

 
 
 
 
Definition. 
A set 𝑋 has the LUB property iff efery subset of 𝑋 with an upper bound has a 

least upper bound in 𝑋 (smaller than any other upper bound). This element is 

called the supremum of X, sup(𝑋). Greatest-lower-bound (GLB) and 

infimum of 𝑋, inf(𝑋) are defined in a similar manner. 

Every limited subset of ℝ has both infimum and supremum but ℚ does not, 

{𝑥 ∈ ℚ|𝑥2 < 2} has no supremum in ℚ. ℝ is complete (every Cauchy 

sequence has a limit) but ℚ is full of gaps. Useful notations for supremum 

and infimum are: 

sup
𝑥∈𝑀

𝑓(𝑥) ≡ sup{𝑓(𝑥)|𝑥 ∈ 𝑀} , inf
𝑥∈𝑀

𝑓(𝑥) ≡ inf{𝑓(𝑥)|𝑥 ∈ 𝑀} , sup
𝑛∈ℤ+

𝑎𝑛… 

The supremum 𝑠 of a set 𝑀 is characterized by:   (𝜖-characterization of sup.) 

I: 𝑥 ∈ 𝑀 ⟹ 𝑥 ≤ 𝑠 
II: ∀𝜖 > 0 ∃𝑦 ∈ 𝑀 : 𝑦 > 𝑠 − 𝜖 

This connects nicely to the (𝜖, 𝛿)-definition of limits. From the completeness 

axiom of ℝ it follows that every sequence that is monotonic and and limited 

has a unique limit lim
𝑛→∞

𝑎𝑛 = sup
𝑛∈ℤ+

𝑎𝑛. The expression 0. 𝑥1𝑥2… is thus a 

welldefined real number. It is the limit of that corresponds to the limited and 

increasing sequence 𝑎𝑛 = ∑ 𝑥𝑘 ⋅ 10
−𝑘𝑛

𝑘=1 . 

Conversely every 𝑥 = [0,1) corresponds to a decimal expression 0, 𝑥1𝑥2… 

where the numbers 𝑥𝑘 are given by looking at which one of 10 subintervals 

of decreasing width that 𝑥 belongs to, starting from ൣ0, 1
10
), … , [ 9

10
,1). 

∑𝑥𝑘10
−𝑘

𝑛

𝑘=1

≤ 𝑥 <∑𝑥𝑘10
−𝑘

𝑛

𝑘=1

+ 10−𝑛  for  𝑛 = 1,2,3, …  → 

lim
𝑛→∞

∑
𝑥𝑘
10𝑘

∞

𝑘=1

≤ 𝑥 ≤ lim
𝑛→∞

∑
𝑥𝑘
10𝑘

∞

𝑘=1

+ lim
𝑛→∞

1

10𝑛
 

The last limit is zero so 𝑥 corresponds to the sequence 0. 𝑥1𝑥2… 
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Continuity and and completeness gives some useful properties for functions 

defined on intervals. 

Theorem. (Intermediate value theorem) 

Assume 𝑓 ∈ C([𝑎, 𝑏], ℝ). Then 

𝑦0 ∈ [𝑓(𝑎), 𝑓(𝑏)]  ∪ [𝑓(𝑏), 𝑓(𝑎)] ⟹ ∃𝑥0 ∈ [𝑎, 𝑏] ∶ 𝑓(𝑥0) = 𝑦0 

Or in plain English, continuous functions adopt all intermediate values. 

Proof. 
Assume 𝑓(𝑎) < 𝑦0 < 𝑓(𝑏) and 

define  𝑀 = {𝑥 ∈ [𝑎, 𝑏]|𝑓(𝑥) ≤ 𝑦0} 
𝑀 limited ⟹ ∃𝑥0 = sup(𝑀) ∈ [𝑎, 𝑏] 

Assume 𝑓(𝑥0) < 𝑦0 

𝑓(𝑏) > 𝑦0 ⟹ 𝑥0 < 𝑏  

lim
𝑥→𝑥0

+
𝑓(𝑥) = 𝑓(𝑥0) ⟹ there are points in [𝑥0, 𝑥0 + 𝜖] s. t. 𝑓(𝑥) < 𝑦0 

 i.e. points belonging to 𝑀 which contradicts 𝑥0 = sup (𝑀) 
Assume 𝑓(𝑥0) > 𝑦0 

𝑓(𝑎) < 𝑦0 ⟹ 𝑥0 > 𝑎 

lim
𝑥→𝑥0

−
𝑓(𝑥) = 𝑓(𝑥0) ⟹ there are points in [𝑥0 − 𝜖, 𝑥0] s. t. 𝑓(𝑥) > 𝑦0 

 [𝑥0 − 𝜖, 𝑥0] not in 𝑀 contradicts 𝑥0 = sup (𝑀) 

Since neither 𝑓(𝑥0) < 𝑦0 and 𝑓(𝑥0) > 𝑦0 we get 𝑓(𝑥0) = 𝑦0. ∎ 

A direct consequence of the theorem is that if 𝑓 is continuous on an interval 𝐼 
then 𝑓(𝐼) is also an interval. 𝑓(𝑥) = 𝑥𝑛 with 𝑛 ∈ ℤ+ with 𝐷𝑓 = [0,∞) has 

𝑉𝑓 = [0,∞) and polynomials 𝑃 of odd degree has 𝑉𝑃 = (−∞,∞) so that 

polynomial equations like ∑ 𝑎𝑘𝑥
𝑘2𝑛+1

𝑘=0 = 𝑦0 has at least one solution. 

Continuous functions maps intervals to intervals and compact intervals to 

compact intervals. A compact interval is an interval [𝑎, 𝑏] that is limited and 

closed. To prove this a new version of continuity is needed. 

Definition. (Uniform continuity) 

A function 𝑓, defined on an interval 𝐼 is uniformly continuous on 𝐼 if for 

every 𝜖 > 0 there is a 𝛿 > 0 such that: 

𝑥, 𝑦 ∈ 𝐼 ∧  |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜖 

Continuity of a function on an interval is dependent on a collection of local 

properties, each point (and its local neighborhood) is considered separately 

…∀𝑥∃𝛿 …. There is one 𝛿(𝜖) for each 𝑥 ∈ 𝐼 while uniform continuity on an 

interval is one global property that refers to all pair of points in the interval at 

the same time …∃𝛿∀𝑥∀𝑦…. There is just one 𝛿(𝜖) that handles all 𝑥, 𝑦 ∈ 𝐼. 
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𝑓(𝑥) = 𝑥−1 is continuous on (0,1] but 

not uniformly continuous since there is 

no guarantee to get |𝑓(𝑥) − 𝑓(𝑦)| < 𝜖0 

no matter how small 𝛿 is if you pick 

𝑥 and 𝑦 with |𝑥 − 𝑦| < 𝛿 in a subinterval 

close enough to zero. The same goes for 

𝑓(𝑥) = 𝑥2 on [0,∞) when 𝑥, 𝑦 → ∞. If 

however the interval is compact, both closed and bounded then continuity 

implies uniform continuity. This statement is left to the reader as an exercise. 

The importance of compact sets comes from patching up local properties into 

one global property. A compact set 𝑀 in a metric space is a set that is both 

bounded sup{𝑑(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝑀} < ∞ and which contains all its limit points. 

Compact sets can also be used on spaces consisting of functions with suitably 

defined distances to prove existence of functions with certain properties.   

The notion of compactness with the property of turning local properties into 

global properties can also be generalized into topological spaces. 

Theorem. (Continuous functions maps compacts sets into compact sets) 

𝑓 ∈ C(𝐷𝑓 , ℝ) ∧ [𝑎, 𝑏] ⊆ 𝐷𝑓 ⟹ 𝑓([𝑎, 𝑏]) is a compact interval. 

Proof. 
I. Boundedness of 𝑓([𝑎, 𝑏]) 
𝑓 is uniformly continuous on [𝑎, 𝑏] (exercise). 

𝜖 = 1 ⇒ ∃𝛿 > 0 s.t. 𝑥, 𝑦 ∈ [𝑎, 𝑏] ∧ |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 1 (∗) 
Let 𝑟 = 𝛿

2
 and split [𝑎, 𝑏] into intervals of length ≤ 𝑟, 𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝑏 

𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] ⇒ |𝑥 − 𝑥𝑖| ≤ 𝑟 < 𝛿
∗
⇒ |𝑓(𝑥) − 𝑓(𝑥𝑖)| < 1 ⇒ 

|𝑓(𝑥)| ≤ |𝑓(𝑥) − 𝑓(𝑥𝑖)| + |𝑓(𝑥𝑖)| < 1 + |𝑓(𝑥𝑖)| 
𝑀 = max

𝑖∈{1,…,𝑛}
(|𝑓(𝑥𝑖)|) ⇒ |𝑓(𝑥)| < 1 + 𝑀 for 𝑥 ∈ [𝑎, 𝑏] 

 

II. Closedness of 𝑓([𝑎, 𝑏]) 

LUB-property of ℝ and 𝑓([𝑎, 𝑏]) bounded ⇒ ∃𝐺 ∈ ℝ ∶ 𝐺 = sup(𝑓([𝑎, 𝑏])) 

Assume non-existence of 𝑥 ∈ [𝑎, 𝑏] s.t. 𝑓(𝑥) = 𝐺 and form (𝑥) =
1

𝐺−𝑓(𝑥)
 . 

𝑔 continuous on [𝑎, 𝑏] ⇒ 𝑔 limited on [𝑎, 𝑏] but 

𝐺 = sup
𝑥∈[𝑎,𝑏]

𝑓(𝑥) ⇒ 𝑔 not limited upwards on [𝑎, 𝑏], contradiction so  

𝑓(𝑥) ≠ 𝐺 for 𝑥 ∈ [𝑎, 𝑏] is false ⇒ ∃𝑥2 ∈ [𝑎, 𝑏]: 𝑓(𝑥2) = 𝐺 

 

Existence of 𝑥1 ∈ [𝑎, 𝑏] s. t.  𝑓(𝑥1) = inf(𝑓([𝑎, 𝑏])) is shown similarly. 

 

𝑓([𝑎, 𝑏]) ⊆ [𝑓(𝑥1) = 𝑦min , 𝑓(𝑥2) = 𝑦max] where 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] 
 

𝑓 assumes intermediate values ⟹ 𝑓([𝑎, 𝑏]) = [𝑦min, 𝑦max] ∎ 

Continuous functions from a compact space to the real numbers attain their 

maximum and minimum values a.k.a the extreme value theorem. 

𝜖0 

𝛿 

𝑥 

𝑓(𝑥) 

𝛿 
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3.7.2 Derivation 

Calculus divides broadly into differential calculus and integral calculus. 

The close connection between these areas was independently discovered by 

Leibniz and Newton. They were the two great pioneers of calculus but their 

work didn’t start from an empty slate. There were predecessors and 

contemporaries that made their discoveries possible. 

Early signs of derivation and integration can be seen in Greek geometry 

with tangents as a limiting or exceptional case of secants and Archimedes’ 

calculations of areas and volumes. A more systematic treatment took place 

after Descartes’ introduction of the coordinate system in 1637, but he was 

not alone to invent the coordinate system. His rival Fermat had done the 

same thing. Fermat is considered to be the better mathematician of the two; 

he also formulated methods for finding maxima, minima and tangents. 

Other pioneers of calculus are Roberval and Cavalieri. They independently 

discovered the method of indivisibles, an early method of integration. It 

takes a great mind to make a great discovery but when the preparatory work 

has been made it is only a matter of time before someone breaks through. 

A rigorous treatment of analysis based on the definition of limits in the 

previous section would not come until the 19th century. It was made by 

Weierstrass, known as the “father of modern analysis”. To sum it all up: 

• René Decartes (1596–1650) French. 

Introduced coordinate system and originator of western philosophy. 

 

• Pierre de Fermat (1607–1665) French. 

Coinvented coordinates and a method for finding maxima and tangents. 

 

• Bonaventura Cavalieri (1598–1647) Italian. 

Developed a method for integration and stated Cavalieri’s principle. 

 

• Gilles de Roberval (1602–1675) French. 

Coinvented Cavalieris methods and connected tangents with motion. 

 

• Gottfried Wilhelm von Leibniz (1646–1716) German. 

Developed differential and integral calculus and notation for it. 

 

• Sir Isaac Neewton (1642–1726) English. 

Calculus and classical mechanics with laws of motion and gravitation. 

 

• Karl Weierstrass (1815–1897) German. 

Rigourus foundation of analysis based on formal definition of limits. 
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Secant slope: 𝑘𝑠 =
𝑦1 − 𝑦0
𝑥1 − 𝑥0

=
Δ𝑦

Δ𝑥
 

Tangent slope: kt = lim
𝑥1→𝑥0

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
=
𝑑𝑦

𝑑𝑥
 

 

Equation for straight line:  𝑦 − 𝑦0 = 𝑘(𝑥 − 𝑥0) 

The corner-stone of differential calculus is the derivative. It measures how 

much the dependent variable (𝑦) changes under variation of the independent 

variable (𝑥). Their difference quotient will approach the slope of the tangent 

in the limit when a secant becomes tangential. When the independent variable 

is time it means instanteneous rate of change. This concept is immensely 

important in physics where concepts such as speed and acceleration are 

defined by derivatives. The average speed in a time interval from 𝑡0 to 𝑡1 

corresponts to the slope of the secant 𝑣 = (𝑠1 − 𝑠0) (𝑡1 − 𝑡0)Τ = Δ𝑠 Δ𝑡Τ  and 

as 𝑡1 → 𝑡0 the instanteneous speed becomes 𝑣 = 𝑑𝑠 𝑑𝑡Τ  (𝑚/𝑠) and the 

acceleration is 𝑎 = 𝑑𝑣 𝑑𝑡Τ = 𝑑2𝑠 𝑑𝑡2Τ  (𝑚 𝑠2)Τ . 

( n.b.  𝑑2 ↔ 𝑑 ∘ 𝑑 and 𝑑𝑡2 ↔ 𝑑𝑡 ⋅ 𝑑𝑡. ) 

  

 

 

 

 

 

 

 

 

In the following we will assume that a function 𝑓: 𝐷𝑓 ⊆ ℝ → ℝ is defined in 

a neighborhood of 𝑥0 so that difference quotients are defined when needed. 

Definition. 

If the following limit exists 

lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

Then the defivative of 𝑓 at 𝑥0 exists and equals that limit. 

Left- and right-sided derivatives are defined by using one-sided limits. A 

function whose domain 𝐷𝑓 is a union of intervals is differentiable if the 

derivative exists in every point of its domain. This function called the 

derivative of 𝑓 may have its own derivative and so forth. There are several 

notations for derivatives of first and higher orders: 

Lagrange: 𝑓′, 𝑓′′, … , 𝑓(𝑛) 𝑓′(𝑥0), … 

Euler: 𝐷𝑓, 𝐷2𝑓,… , 𝐷𝑛𝑓 𝐷𝑓(𝑥0), … 

Newton: 𝑦̇, 𝑦̈, 𝑦   (dot notation) 𝑦̇(𝑡0), …  (often with time) 

Leibniz:                 
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
                 

𝑑𝑦

𝑑𝑥
|
𝑥=𝑥0

or 
𝑑𝑦

𝑑𝑥
(𝑥0) 
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Leibniz notation is based on a repeated use of an infinetsimal version ∆↷ 𝑑 

of the forward difference operator Δ = 𝐸 − 𝐼. 𝐸 is the forward operator from 

page 108 acting on a sequence. For the sequence 𝑦𝛿 = 〈𝑓(𝑎 + 𝑘 ⋅ 𝛿)〉𝑘=0
∞  the 

third derivative is approximated at the points (𝑎, 𝑎 + 𝛿, 𝑎 + 2𝛿,… ) by: 

Δ3𝑦𝛿
𝛿3

=
(𝐸 − 𝐼)3𝑦𝛿

𝛿3
= 〈
𝑓(𝑎 + 3𝛿) − 3𝑓(𝑎 + 2𝛿) + 3𝑓(𝑎 + 𝛿) − 𝑓(𝑎)

𝛿3
, … 〉 

Δ(Δ(Δ𝑦𝛿/𝛿)/𝛿)/𝛿 → 〈
𝑑3𝑓

𝑑𝑥3
(𝑎),

𝑑3𝑓

𝑑𝑥3
(𝑎 + 𝛿),

𝑑3𝑓

𝑑𝑥3
(𝑎 + 2𝛿), … 〉  as 𝛿 → 0  

A function is said to be continuously differentiable and belong to class 𝐶1 if 

it is differentiable and the derivative is a continuous function. To be of class 

𝐶𝑘 requires existence of 𝑓, 𝑓′, … , 𝑓𝑘 and 𝑓𝑘 should be continuous. Existence 

of 𝑓𝑘 implies continuity of all derivatives 𝑓(𝑖) with 𝑖 < 𝑘. A function is 

called smooth and belonging to class 𝐶∞ if 𝑓𝑘 exists for every 𝑘 ∈ ℤ+. 

Theorem. 

D𝑥𝑛 = 𝑛𝑥𝑛−1  for 𝑛 ∈ ℕ0 

 Proof 

lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim

ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
= lim

ℎ→0

(𝑎 + ℎ)𝑛 − 𝑎𝑛

ℎ
= 

lim
ℎ→0

∑(
𝑛
𝑘
) 𝑎𝑘ℎ𝑛−1−𝑘

𝑛−1

𝑘=0

= 𝑛𝑎𝑛−1   ⟹    𝑓′(𝑎) = 𝑛𝑎𝑛−1 ⟹   𝐷𝑥𝑛 = 𝑛𝑥𝑛−1  ∎ 

𝐷𝑘𝑥𝑛 = [𝑘 ≤ 𝑛] ⋅ 𝑛(𝑛 − 1)… (𝑛 − 𝑘 + 1)𝑥𝑛−𝑘 = [𝑘 ≤ 𝑛] ⋅ 𝑛𝑘𝑥𝑛−𝑘 with 

special case 𝐷𝑛𝑥𝑛 = 𝑛! and 𝐷𝑚𝑥𝑛 = 0 if 𝑚 > 𝑛 so 𝑓(𝑥) = 𝑥𝑛 ∈ C∞. 

Derivatives of other functions will be given or derived once they have been 

properly defined. As for limits there are rules that makes many derivatives 

easy to calculate:    (All given functions are assumed differentiable) 

Linearity 

(𝑎𝑓 + 𝑏𝑔)′ = 𝑎𝑓′ + 𝑏𝑔′   where 𝑎, 𝑏 ∈ ℝ   

Product rule  (Leibniz’s law) 

(𝑓 ⋅ 𝑔)′ = 𝑓′ ⋅ 𝑔 + 𝑓 ⋅ 𝑔′ 

Derivationlike operators occur in many areas of mathematics, with or without 

limits. Leibniz law is the common property of these operators. 
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Generalized Leibniz rule 

D𝑘(𝑓1𝑓2 ⋅ … ⋅ 𝑓𝑛) = ∑ (
𝑘

𝑗1, 𝑗2, … , 𝑗𝑛
) ∏ 𝑓𝑖

(𝑗𝑖)
𝑛

𝑖 = 1𝑗1+𝑗2+⋯+𝑗𝑛=𝑘

 

Quotient rule 

(
𝑓

𝑔
)
′

=
𝑓′𝑔 − 𝑓𝑔′

𝑔2
 where 𝑔 is nonzero 

Chain rule 

Dൣ𝑓(𝑔(𝑥))൧ = 𝑓′(𝑔(𝑥)) ⋅ 𝑔′(𝑥) =
𝑑

𝑑𝑧
𝑓(𝑧)|

𝑧=𝑔(𝑥)
⋅
𝑑

𝑑𝑥
𝑔(𝑥) 

Inverse function rule 

𝑓 ∘ 𝑔 = id ∧  𝑔 ∘ 𝑓 = id →    g′ =
1

𝑓′ ∘ 𝑔
        (  

𝑑𝑥

𝑑𝑦
=

1

𝑑𝑦 𝑑𝑥Τ
  ) 

Leibniz’s notation is often very suggestive. If 𝑦(𝑥) = 𝑓(𝑔(ℎ(𝑥))) then we 

only need to know the derivatives of 𝑓, 𝑔 and ℎ to find the derivative of 𝑦(𝑥). 

 

    
𝑑𝑦

𝑑𝑥
=
𝑑𝑓

𝑑𝑥
=
𝑑𝑓

𝑑𝑔
⋅
𝑑𝑔

𝑑ℎ
⋅
𝑑ℎ

𝑑𝑥
 

 with 

𝑓 = sin 𝑔 , 𝑔 = 1 ℎΤ  , ℎ = ln 𝑥 

 

Derivatives of elementary functions like sin 𝑥 and ln 𝑥 will be given when we 

have introduced proper definitions. With derivatives and differentiation rules 

graphs can be analyzed and optimization problems can be solved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These properties follows easily from definitions of derivation and extrema. 

𝑦 = sin(1 ln(𝑥)Τ ) 

𝑥 

Function is increasing if 𝑓′(𝑥) ≥ 0 

Function is decreasing if 𝑓′(𝑥) ≤ 0 

 

Stationary points have 𝑓′(𝑥) = 0 

 

All line segments are above the graph 

the function is convex: 𝑓′′(𝑥) ≥ 0 

All line segments are below the graph 

the function is concave: 𝑓′′(𝑥) ≤ 0  

 

Inflection points: 𝑓′′(𝑥) = 0 

 

Local minima if𝑓′(𝑥) = 0 , 𝑓′′(𝑥) > 0  

Local maxima if 𝑓′(𝑥) = 0 , 𝑓′′(𝑥) < 0 
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Definition. (Extrema) 

A real-valued function 𝑓 defined on a domain 𝑋 has a global maximum at 𝑥∗ 

if 𝑓(𝑥) ≤ 𝑓(𝑥∗) for all 𝑥 ∈ 𝑋 and correspondingly for minimum. 

𝑓 has a local maximum at 𝑥∗ in a metric space 𝑋 if ∃𝜀 > 0 s.t. 

𝑓(𝑥) ≤ 𝑓(𝑥∗) for all 𝑥 ∈ 𝑋 with ‖𝑥 − 𝑥∗‖ < 𝜀 and ditto for minimum. 

 

Another set of useful theorems from calculus are the following: 

Theorem.   (Rolle’s theorem, a special case of the mean value theorem.) 

If 𝑓:ℝ → ℝ is continuous on [𝑎, 𝑏] 

and differentiable on (𝑎, 𝑏) and 

𝑓(𝑎) = 𝑓(𝑏) then 

∃𝑐 ∈ (𝑎, 𝑏) : 𝑓′(𝑐) = 0 

 

Theorem. (Mean value theorem.) 

If 𝑓:ℝ → ℝ is continuous on [𝑎, 𝑏] 

and differentiable on (𝑎, 𝑏) then 

∃𝑐 ∈ (𝑎, 𝑏) ∶ 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

 

Theorem. (Generalized mean value theorem.) 

If 𝑓, 𝑔: ℝ → ℝ are continuous on [𝑎, 𝑏] and 

differentiable on (𝑎, 𝑏) then ∃𝑐 ∈ (𝑎, 𝑏) s.t. 

(𝑓(𝑏) − 𝑓(𝑎))𝑔′(𝑐) = (𝑔(𝑏) − 𝑔(𝑎))𝑓′(𝑐) 

Existence of a tangent parallel to the secant in 

the last case is not always guaranteed. If  

𝑓′(𝑐) = 𝑔′(𝑐) = 0 then a tangent might not 

even be defined at 𝑐. This is the case for 𝑡 ↦

(𝑡3, 1 − 𝑡2) which has a cusp, a place on a 

graph 𝑡 ↦ (𝑓(𝑡), 𝑔(𝑡)) where both 𝑓′ and 𝑔′ 

are zero and at least one of them changes sign. 

Proof. (Rolle’s theorem) 

If 𝑓 is constant on [𝑎, 𝑏] then 𝑓′ ≡ 0 on (𝑎, 𝑏). If not then there must be an 

interior point 𝑐 ∈ (𝑎, 𝑏) where 𝑓 adopts an extremum for [𝑎, 𝑏] (see p.172). 
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 will have different signs on (𝑎, 𝑐) and (𝑐, 𝑏) and since the limit when 

𝑥 → 𝑐 exists it must be zero, i.e. 𝑓′(𝑐) = 0.  ∎ 

Applying Rolle’s theorem to 𝑔(𝑥) = 𝑓(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
⋅ 𝑥 with 𝑔(𝑎) = 𝑔(𝑏) 

gives the mean value theorem for 𝑓(𝑥). 
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When Leibniz introduced the notation 𝑑𝑦 𝑑𝑥Τ  he thought ot it as a division 

between an infinetisimally small change in the 𝑦-value of a function 𝑦(𝑥) in 

response to an infinitesimally small change in the 𝑥-value. These infini-

tesimals 𝑑𝑦 and 𝑑𝑥 where not real numbers but their quotient would become 

a real number. This informal and confusing mixing of different entities was 

later cleared up by a more rigorous treatment in terms of limits. 

An alternative way of introdicing rigor is given by non-standard analysis 

where infinitesimal numbers are introduced in a strict way with well-defined 

properties and relations to real numbers. The informal use of infinitesimals is 

still used in physics. Textbooks on thermodynamics and treatments of error 

estimations are full of formulas with infinitesimals. The best way to look at 

these infinitesimals are as differentials. 

Definition. (Differential) 

The differential of 𝑓(𝑥): ℝ → ℝ is a function 𝑑𝑓 of 𝑥 and the increment ∆𝑥. 

𝑑𝑓(𝑥, ∆𝑥) ≝ 𝑓′(𝑥) ⋅ ∆𝑥 

The variables on the left are often omitted and with 𝑓(𝑥) = 𝑥 we get the 

differential 𝑑𝑥 = ∆𝑥. The differential of 𝑓(𝑥) becomes 𝑑𝑓 = 𝑓′(𝑥)𝑑𝑥. 

 

 

 

 

 

 

 

 

 

 

 

fig. 3.7.2  Function 𝑓(𝑥) and its differential 𝑑𝑓(𝑥, ∆𝑥) = 𝑓′(𝑥)∆𝑥. 

The differential is the best linear approximation of the increment in 𝑦 as a 

function of the increment in 𝑥. It’s known as the principal or linear part of the 

increment of a function. 

Derivatives and differentials have natural generalizations for functions of 

several variables with with partial derivatives and total differentials. 
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Functions of several variables 𝑓(𝑥, 𝑦, 𝑧, … ) or 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑛 > 1 have 

partial derivatives where one variable varies and the others are kept fixed. 

The partial derivative of an 𝑛-ary function 𝑓(𝑥1, … , 𝑥𝑛) in the direction 𝑥𝑖 at 

the point 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑛) is defined as: 

𝜕𝑓

𝜕𝑥𝑖
(𝒂) = lim

ℎ→0

𝑓(𝑎1, … , 𝑎𝑖 + ℎ, , … , 𝑎𝑛) − 𝑓(𝑎1, … , 𝑎𝑖 , … , 𝑎𝑛)

ℎ
 

( all variables except 𝑥𝑖  are fixed ) 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.7.3  Partial derivatives 𝜕𝑓 𝜕𝑥Τ (𝒂) and 𝜕𝑓 𝜕𝑦Τ (𝒂) of 𝑓(𝑥, 𝑦). 

As 𝒂 is varied 𝜕𝑓 𝜕𝑥𝑖Τ  becomes a function over the domain of 𝑓 for which 

new derivatives can be taken. Some notations for 1st and 2nd orders are: 

𝑓𝑥
′ = 𝑓𝑥 = 𝜕𝑥𝑓 = 𝐷𝑥𝑓 = 𝐷1𝑓 =

𝜕

𝜕𝑥
𝑓 =

𝜕𝑓

𝜕𝑥
= 𝑓𝑥(𝑥, 𝑦, … ) =

𝜕𝑓

𝜕𝑥1
(𝑥1, … , 𝑥𝑛) 

   
𝜕2𝑓

𝜕𝑥2
= 𝑓𝑥𝑥 = 𝜕𝑥𝑥𝑓              

𝜕2𝑓

𝜕𝑦𝜕𝑥
=
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
) = (𝑓𝑥)𝑦 = 𝑓𝑥𝑦 = 𝜕𝑦𝑥𝑓 = 𝑓𝑥𝑦 

𝜕𝑦𝑥𝑓 = 𝜕𝑥𝑦𝑓 if the second derivatives are continuous. When all the partial 

derivatives up to order 𝑛 are continuous, then the order for partial derivation 

will not matter and the multi index notation for partial derivation can be used: 

𝛼 = (𝛼1, … , 𝛼𝑛)

|𝛼| = 𝛼1 +⋯+ 𝛼𝑛
  𝛼𝑖 ∈ ℕ0  

Partial derivative
of order |𝛼|

   
𝜕|𝛼|𝑓

𝜕𝑥𝛼
=

𝜕|𝛼|𝑓

𝜕𝑥1
𝛼1 …𝜕𝑥𝑛

𝛼𝑛
 

The differential for a fuction 𝑓:ℝ𝑛 → ℝ at 𝒙0 = (𝑥1, 𝑥2, … , 𝑥𝑛), i.e. the best 

linear approximation of 𝑓 around 𝒙0 is: 

𝑑𝑓(𝒙𝟎, ∆𝒙) = 𝜕1𝑓(𝒙0)∆𝑥1 + 𝜕1𝒇(𝒙0)∆𝑥1 +⋯+ 𝜕𝑛𝑓(𝒙0)∆𝑥𝑛  

Further excursions into the realm of multivariable analysis will have to wait 

for a later part of our journey. 
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𝑦𝑖 = 𝑦(𝑥𝑖) 

𝑥𝑖 … 

𝑑𝑥 

Area = න 𝑦(𝑥)𝑑𝑥 = ∑ 𝑦(𝑥𝑖)𝑑𝑥

∞−1

𝑖=0

𝑥∞

𝑥0

 

3.7.3 Integration 

If derivation is the first leg of calculus then integration is the second leg of 

calculus. Derivation deals with slopes and integration deals with areas. The 

fundamental theorem of calculus brings these seemingly different operators 

together. Rudimentary forms of the theorem were given before Leibniz and 

Newton but it was they who really integrated diffrential calculus and integral 

calculus into one area. 

In Leibniz notation derivation is a quotient of two infinitesimals dy dxΤ  and 

integration is an infinite sum of infinitesimals ∑ 𝑦𝑖𝑑𝑥
∞
𝑖=0  which can be used 

to calculate the area under a graph 𝑦(𝑥). Areas below the x-axis are negative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig. 3.7.4  Area as an infinite sum of infinitesimal rectangular stripe areas. 

The fundamental theorem of calculus is quite obvious for the derivative of a 

function. The sum of differential increments equals the total difference.  

න
𝑑𝑦

𝑑𝑥
𝑑𝑥

𝑥∞

𝑥0

= ∑
𝑑𝑦

𝑑𝑥
(𝑥𝑖)

∞−1

𝑖=0

𝑑𝑥 = ∑ 𝑦(𝑥𝑖+1) − 𝑦(𝑥𝑖)

∞−1

𝑖=0

= 𝑦(𝑥∞) − 𝑦(𝑥0) 

Definition. (Antiderivative) 

An antiderivative of a function 𝑓(𝑥) also known as a primitive function, 

primitive integral or indefinite integral is a function 𝐹(𝑥) s.t. 𝐹′(𝑥) = 𝑓(𝑥), 

an alternative notation for 𝐹(𝑥) is ∫ 𝑓(𝑥)𝑑𝑥, undefinite integral. 

Theorem. (Fundamental theorem of calculus) 

න 𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) ≡ [𝐹(𝑥)]𝑎
𝑏  
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Gottfried Wilhelm Leibniz (1646–1716) 

Cox’s IQ-ranking of historic persons put Leibniz in 

second place after Goethe. This is not to be taking too 

seriously; Goethe never produced anything of enduring 

scientific value. Leibniz was a polymath, active at the 

highest level in many disciplines. He made important 

contributions in philosophy, history, theology, biology, 

medicine, psychology (consciousness and perception), 

geology (earth molten core), politics, law, technology and more, a true 

“Renaissance man” comparable to Da Vinci or Galileo. Leibniz had no 

false modesty; he described himself as “the most teachable of mortals”. 

Leibniz was born in Leipzig at the end of thirty years of war in the Thirty 

Year’s War (1618–1648) fought between Catholic rulers and rulers of the 

reform movement. The wars had left German parts of Europe devastated. 

France became the dominant power and the long reign of Louis XIV 

(1643–1715) would last Leibniz entire lifespan. 

Leibniz grew up in a pious Lutheran family. His father was a professor of 

moral philosophy that died when Gottfried was only six years old. He had 

a big personal library, full of Latin texts on theology and philosophy. The 

young Gottfried quickly learned Latin and started reading. At age 15 he 

entered the university to study philosophy and law. His application in 

1666 for a doctorate in Leipzig was turned down in spite of his known 

abilities, probably due to his young age. The following year he earned a 

license to practice law and a doctor’s degree in a university outside 

Nuremberg. 

Leibniz first job was as a secretary in an alchemical society before he was 

employed as an assistant to Baron von Boineburg, who served the local 

ruler in Mainz. Leibniz came to work with a redraft of the legal code for 

the Elector of Mainz and got him interested in a plan to protect German 

areas from French intervention. The plan was to persuade Louis XIV to 

engage elsewhere, in a war with Egypt as a stepping stone for a conquest 

of the Dutch East Indies. The plan became irrelevant with the onset of the 

Franco-Dutch war 1672–1678 but it started Leibniz’s diplomatic career. 

In 1672 the French government invited Leibniz to Paris where he met 

Christiaan Huygens, a leading scientist of the time. Leibniz realized his 

shortcomings. Huygens became his mentor in mathematics and physics. 
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The following year Leibniz was sent on a mission to the English govern-

ment. In England he presented his mechanical calculating machine for the 

Royal Society. He had been working on it for some years and it was the 

first calculator that could handle elementary arithmetic with +,−,×,÷. 

The mission ended with news of the Elector’s death and Leibniz needed a 

new job. He yearned for the intellectual climate in Paris or possibly the 

Habsburg imperial court but had to settle for a position with the Duchy of 

Brunswick-Lüneburg, home of the House of Hanover dynasty. 

Leibniz worked for the Hanover dynasty 1676–1716 as a political adviser, 

librarian and historian. He was commissioned to write a book on the 

history of the House of Hanover which he did but in a much more 

thorough and time consuming way than his employers had hoped. It was 

not published until the 19th century. 

Although Leibniz never married he corresponded with several influential 

women in the upper classes. Among his friends, benefactors and students 

where Electress Sophia of Hanover, her daughter Sophia, queen of Prussia 

and Caroline of Ansbach, future queen in England.  

From 1712 Leibniz spent two years at the Habsburg court where he took 

an active part in setting up his patron Sophia for the British throne. There 

were 50 persons closer in line but they were all Catholics and excluded by 

the Act of Settlement from 1701. Sophia died a few months before queen 

Anne but her son became king George I of Great Britain. Leibniz hoped 

to gain a position at the English court but Gottfried and George were not 

the best of friends. George was irritated with Leibniz for constant delays 

with the historical chronicle and even worse was the bitter conflict with 

Newton over the invention of calculus. The dispute started in 1708 and 

would come to cloud the rest of Leibniz’ life. 

When Leibniz died in 1716 he was out of favor with important people, the 

rational school of philosophy that he belonged to was eclipsed by 

empiricism. Much of his work was contained in private communications 

and his reputation was in decline. His grave went unmarked for 50 years 

even though he had become a member of the academies of science in both 

Paris and London. Leibniz always emphasized the collaborative endeavor 

of science. He founded the Berlin Academy of Sciences and he became its 

first president from 1700 to his death. In 1711 he was visited by Tsar 

Peter the Great of Russia. After that he took great interest in Russian 

affairs and together they prepared for the St. Petersburg Academy. 
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Leibniz was given the opportunity to combine his work at different courts 

for various rulers with his own pursuit of various projects. Much of this 

work was done in his vast correspondence. There were more than 600 

correspondents, many of them leading scholars in their field. It was a 

lifelong ambition of Leibniz to assemble all human knowledge. 

Leibniz pursuit of knowledge started with his mother who had a large 

influence on him, especially in moral and religious questions. He was a 

Lutheran but with a lifelong aim to unify Catholic and Lutheran churches. 

He argued for a European confederation with a uniform Christianity. 

In one of his most important publications the Theodicé from 1710 he sat 

down the principles of divine justice and he claimed that the world was 

the best of all possible worlds despite apparent suffering, injustice and 

natural disasters. He argued from assuming that God was a perfect being 

and if it had been possible for God to create a better world then he would 

have done so. 

Leibniz’ belief was later satirized by Voltaire in Candide where Leibniz is 

portrayed as doctor Pangloss, a character that keeps claiming that we live 

in the best of all worlds even after a long series of personal disasters and 

human tragedies. In the end after many calamities his protégée the young 

Candide stops believing in him, starts thinking independently and takes a 

more realistic view of the world and of religion. 

Leibniz saw no contradiction between reason and faith. Any part of 

religion not in line with reason must be discarded from a true under-

standing of religion. When it comes to philosophy Leibniz belonged to 

the rational school of continental Europe. They claimed true knowledge 

comes from applying reason to first principles in contrast to the empirical 

school strong in Britain. Rationalism was in some ways a continuation of 

the scholastic tradition but without theology. A famous saying attributed 

to Leibniz is: Calculemus “Let us calculate to see who is right”. 

Part of his rational philosophy was a belief in a universal language of 

logic with its own calculus to decide correct from incorrect reasoning. His 

ideas on logic remained unpublished and it took 200 years before the 

ideas resurfaced in modern formal logic with George Boole and others. In 

many ways he was a forerunner to modern computer science. He refined 

the binary number system and improved Pascal’s calculating machine to 

handle multiplication and division.  



Calculus 183 

The calculator was not his only contribution to applied science and 

mechanical devices. Among his other designs were lamps, clocks, wind-

mills, water pumps, hydraulic presses and submarines. Combining theory 

with practice was his motto. Leibniz’ work ranged from very practical to 

highly speculative. 

Newton contributed more to the development of physics and mechanics 

than Leibniz but in the end it was Leibniz’ idea that replaced Descarte’s 

and Newton’s idea of space and time that existed independently of matter 

as an empty container. Leibniz had a relational view of space/time and 

matter that was more in line with the theories of Mach and Einstein that 

extended and replaced Newton’s mechanics and gravitational theory. 

Leibniz mathematical career started late. He had begun to study motion 

and constructing a calculating machine around 1670 and was seeking 

contacts with scientists. With the trips to Paris and London in 1672–1673 

he got connections and realized that he needed to learn more if he was 

going to achieve something that matched his ambitions. He began 

working on the geometry of infinitesimals  and struggled to find a good 

notation. 

Leibniz notation for derivation 𝑑𝑦 𝑑𝑥Τ  and integration ∫𝑓(𝑥)𝑑𝑥 where 𝑑 

means infinitesimal difference and the elongated S comes from summa 

are now standard. Notation was important to Leibniz. He pointed out that 

analysis was already known in ancient Greece and his contribution was 

the notation which “express the exact nature of a thing briefly … the 

labour of thought is wonderfully diminished”. 

By 1676 he had derived much of what is taught in calculus in high school, 

such as (𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′ and 𝐷(𝑥𝛼) = 𝛼𝑥𝛼−1 for 𝛼 ∈ ℚ. The dispute 

between Leibniz and Newton over precedence was rooted in the long time 

between thought and publication. Leibniz work on differential calulus was 

published in 1684 and his results on integral calculus were printed in 

1686. Newton’s Principa appeared the following year but he had written 

Method of Fluxions already in 1671 but he failed to get it published. 

When Leibniz published in 1684 the notation was new and he gave no 

proofs. Jacob Bernoulli called it an enigma rather than an explanation.  

Proper proofs based on Leibniz characterization of infinetismal numbers 

were later implemented in non-standard analysis, a formal and rigorous 

extension of the real number system. 
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Among Leibniz other contributions to mathematics are: 

• Arranging coefficients of a system of linear equation into a matrix. 

• Solving these equations by means of Gaussian elimination. 

• The concept of a matrix determinant calculated  by Leibniz formula. 

det(𝐴) = ∑ sgn(𝜎)∏𝑎𝜎(𝑖),𝑖

𝑛

𝑖=1𝜎∈𝑆𝑛

 

• The terms function, variable, parameter and coordinate. 

• Notation for the the n-th root √𝑥
𝑛

. 

• The chain rule: (𝑓 ∘ 𝑔)′ = (𝑓′ ∘ 𝑔) ⋅ 𝑔′ 
• 

𝑑

𝑑𝑥
(∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)
) = 𝑓(𝑥, 𝑏(𝑥)) ⋅

𝑑𝑏(𝑥)

𝑑𝑥
− 𝑓(𝑥, 𝑎(𝑥)) ⋅

𝑑𝑎(𝑥)

𝑑𝑥
+ ∫

𝜕𝑓(𝑥,𝑡)

𝜕𝑡

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑡 

• Leibniz formula for pi: 𝜋 4Τ = 1 − 1 3Τ + 1 5Τ − 1 7Τ + 1 9Τ −… 

The last formula is a special case of the serial expansion of arctan (𝑥). 

tan−1(𝑥) = 𝑥 −
𝑥3

3
+
𝑥5

5
−
𝑥7

7
+
𝑥9

9
−⋯ 

This formula was however already known 300 years earlier by Madhava 

an Indian mathematician and astronomer who discovered the infinte series 

for the trigonometric functions of sine, cosine, tangent and arctangent. 

300 years after Leibniz presented his first calculating machine to the royal 

society in London in 1673 came the first pocket calculators. Leibniz made 

three more machines based on his original model. None of these machines 

has survived and in 1690 he made a final version “machina arithmetica”. 

This too fell into oblivion but it was rediscovered in 1894 in an attic of 

the University Church of Göttingen. The machine can now be seen at the 

Gottfried Wilhelm Leibniz Library in Hannover together with the private 

library of Leibniz.    
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A proper definition of integration based on limits and not on infinitesimals 

was given by Berhard Riemann in 1854. 

Definition. (Partition) 

A partition ∆ of an interval [𝑎, 𝑏] is a finite sequence, 

∆= {𝑥0, 𝑥1, … , 𝑥𝑛}  s.t. 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏 

The norm of a partition equals the longest subinterval. 

 ‖∆‖ = max
0≤𝑖≤𝑛−1

(𝑥𝑖+1 − 𝑥𝑖) 

Definition. (Riemann integral) 

Let 𝑓: [𝑎, 𝑏] → ℝ then the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 exists and equals S iff: 

∀𝜀 > 0∃𝛿 > 0 s.t. for any partition ∆= {𝑥0, 𝑥1, … , 𝑥𝑛} of [𝑎, 𝑏] with ‖∆‖ < 𝛿 

|∑ 𝑓(𝑡𝑖)(𝑥𝑖+1 − 𝑥𝑖)
𝑛−1
𝑖=0⏟              

Riemann sum

− 𝑆| < 𝜀 for any choice of 𝑡𝑖 where 𝑡𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1]. 

 

 

 

 

 

 

 

 

 

Fig. 3.7.5  Riemann sum for the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 

There is an alternative definition of the Riemann integral that can be shown 

to be equivalent to the one given above. It is given in terms of upper 𝐼 ̅ and 

lower I estimates of 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. These are called Darboux integrals. 

For a partition ∆= {𝑥0, 𝑥1, … , 𝑥𝑛} where ∆𝑥𝑘 ≡ 𝑥𝑘 − 𝑥𝑘−1 let 

𝑀𝑘 = sup
𝑥𝑘−1≤𝑥≤𝑥𝑘

𝑓(𝑥)  and  𝑆(∆) =∑𝑀𝑘∆𝑥𝑘

𝑛

𝑘=1

 and 𝐼 = sup
∆
𝑆(∆)

𝑚𝑘 = inf
𝑥𝑘−1≤𝑥≤𝑥𝑘

𝑓(𝑥)  and  𝑆(∆) =∑𝑚𝑘∆𝑥𝑘

𝑛

𝑘=1

 and 𝐼 = inf
∆
𝑆(∆)  

   

If 𝐼 = 𝐼 then 𝑓 is Riemann integrable and ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐼 = 𝐼.̅ With this 

definition it’s easy to find a non integrable function. 

𝑓(𝑥) 

𝑥 

𝑦 

𝑡𝑖 
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Definition. 

The characteristic function also known as the indicator function of a 

subset 𝐴 of a set 𝑋 is the function 𝐼𝐴: 𝑋 → {0,1} defined as: 

𝐼𝐴(𝑥) = {
1 if 𝑥 ∈ 𝐴 
0 if 𝑥 ∉ 𝐴 

  or with Iverson bracket notation 𝐼𝐴(𝑥) = [𝑥 ∈ 𝐴]. 

The characteristic function of the rationals 𝐼ℚ: ℝ → {0,1} can’t be integrated 

on [0,1] since the upper and lower Darboux integrals do not coincide, I= 0 

and 𝐼 = 1. There is however a more general way to define integration that 

can handle even the case ∫ 𝐼ℚ(𝑥)𝑑𝑥
1

0
. It is called Lebesgue integration. A 

function bounded on [𝑎, 𝑏] has a Riemann integral iff it is continuous almost 

everywhere which means outside a set of Lebesgue measure zero. 

The antiderivative of 𝑓 ∈ 𝐶[𝑎, 𝑏] with 𝐹(𝑥0) = 𝑦0 can be defined by (𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑥0
+ 𝑦0. The general antiderivative is undecided up to an additive 

constant usually denoted by 𝐶 and called the integration constant. A variable 

like 𝑡 above that can be freely exchanged for another letter is sometimes 

called a “dummy variable”. It is a placeholder or a bound variable whereas 

𝑥 above has an effect on the value of the expression, making it a free 

variable. Other names and notations for antiderivative are primitive integral, 

indefinite integral, 𝐷−1𝑓(𝑥), ∫ 𝑓𝑑𝑥 and ∫ 𝑓(𝑢)𝑑𝑢. 

Fundamental theorem of calculus 

Let 𝑓: [𝑎, 𝑏] → ℝ be a continuous function. 

Define 𝐹: [𝑎, 𝑏] → ℝ by 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
. 

This is possible since 𝑓 will be uniformly contiuous on [𝑎, 𝑏] and then 

for each 𝜀 > 0 there will be a 𝛿 > 0 s.t. |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| <
𝜀

𝑏−𝑎
 

and for every partition with ‖∆‖ < 𝛿 : 𝑆 − 𝑆 < ∑
𝜀

𝑏−𝑎
∆𝑥𝑘𝑘 = 𝜀 ⇒ 𝐼 = 𝐼 . 

Before looking at the derivative of 𝐹(𝑥) we need the mean value theorem for 

definite integrals which says: 
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑓(𝑐) for some 𝑐 ∈ [𝑎, 𝑏]. 

This follows from the theorem of page 172, 𝑓([𝑎, 𝑏]) = [𝑚,𝑀] that implies: 

𝑚 ≤
1

𝑏 − 𝑎
න 𝑓(𝑥)𝑑𝑥 ≤ 𝑀
𝑏

𝑎

⇒ ∃𝑐 ∈ [𝑎, 𝑏]:න 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑓(𝑐)(𝑏 − 𝑎)  

With this in place the derivative of 𝐹(𝑥) can be proved to exist: 

𝐹′(𝑥) ≡ lim
∆𝑥→0

𝐹(𝑥 + ∆𝑥) − 𝐹(𝑥)

∆𝑥
= lim
∆𝑥→0

1

∆𝑥
න 𝑓(𝑡)𝑑𝑡
𝑥+∆𝑥

𝑥

= lim
∆𝑥→0

𝑓(𝑐) 

for some 𝑐 ∈ [𝑥, 𝑥 + ∆𝑥], this can be written as a function 𝑐 = 𝑐(𝑥, ∆𝑥).
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Applying the squeeze theorem on 𝑥 ≤ 𝑐(𝑥, ∆𝑥) ≤ 𝑥 + ∆𝑥 as ∆𝑥 → 0 and the 

limit theorem for a composition 𝑓(𝑐(𝑥, ∆𝑥)) with 𝑓 continuous gives: 

lim
∆𝑥→0

𝑓(𝑐) = 𝑓(𝑥) which means that 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 has 𝐹′(𝑥) = 𝑓(𝑥). 

As a corollary 𝐷(𝐹(𝑥) − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
) = 0 and from the mean value theorem 

𝐹(𝑥) − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 must be constant throughout [𝑎, 𝑏], call it 𝐶. 

The general antiderivative of 𝑓(𝑥) becomes 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
+ 𝐶 and 

න 𝑓(𝑡)𝑑𝑡

𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎) 

With this we have finally integrated derivation that deals with slopes and 

integration that deals with areas. 

Some properties of antiderivatives and definite integrals are: 

Linearity 

∫(𝛼𝑓(𝑥) + 𝛽𝑔(𝑥))𝑑𝑥 = 𝛼 ∫ 𝑓(𝑥)𝑑𝑥 + 𝛽 ∫𝑔(𝑥)𝑑𝑥  

Conactenated intervals 

∫ 𝑓(𝑥)𝑑𝑥
𝑏
𝑎 + ∫ 𝑓(𝑥)𝑑𝑥

𝑐
𝑏 ) = ∫ 𝑓(𝑥)𝑑𝑥

𝑐
𝑎   

Substitution 

∫ 𝑓(𝑥)𝑑𝑥
𝜑(𝑏)
𝜑(𝑎) = ∫ 𝑓(𝜑(𝑡))𝜑′(𝑡)𝑑𝑡

𝑏
𝑎           { 𝑥 = 𝜑(𝑡) and  𝑑𝑥 = 𝜑′𝑑𝑡  }  

Integration by parts 

∫ 𝑓𝑔′𝑑𝑥
𝑏
𝑎 = [𝑓𝑔]𝑎

𝑏 − ∫ 𝑓′
𝑏
𝑎 𝑔𝑑𝑥                    {  𝐷−1(𝑓𝑔′ + 𝑓′𝑔) = 𝑓𝑔  }  

The illustrations of integration so far have been of area (with sign) but inte-

gration is much more general, it is about summing up basic small units that 

each contribute to a total value. The basic unit can be n-dimensional boxes 

whose contributions equal their volume but they can also be of other shapes. 

 

 

 

 

 

The same applies to derivation that generalizes division. In physics the 

operation of derivation (division) and integration (multiplication) are 

reflected in the units that are used for measurement, for instance: 

Velocity: 𝑣 = 𝑑𝑠 𝑑𝑡Τ  (Unit: 1m/s) and Work: 𝑊 = ∫𝐹𝑑𝑥 (Unit: 1Nm)

∎ 

Base 

H
ei

gh
t 

Area=BH 

a b 

H(x) 

x 

𝐴 = න 𝐻(𝑥)𝑑𝑥
𝑏

𝑎

 

 

Time 
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Distance 

𝑠 = 𝑣 ⋅ 𝑡 

+ + 
– t 

v(t) 

𝑠 = න𝑣(𝑡)𝑑𝑡 

x 

Volume:  = ∫𝐴(𝑥) 𝑑𝑥 
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Calculus provides a unified way of measuring the arc length of a curve. If 

[𝑎, 𝑏] ∋ 𝑡 ↷ 𝑓(𝑡) ∈ ℝ𝑛 is a parametric representation of a curve in ℝ𝑛 and 

∆= {𝑎 = 𝑡0, 𝑡1, … , 𝑡𝑛 = 𝑏} is a partition of [𝑎, 𝑏] then the length of the 

polygonal path 𝐿(∆, 𝒇) = ∑ ‖𝒇(𝑡𝑖) − 𝒇(𝑡𝑖−1)‖
𝑛
𝑖=1  will be a lower bound of 

the arc length. If there is a largest lower bound the curve is called rectifiable 

and sup
∆
𝐿(𝒇, ∆) is the curve’s arc length. If 𝒇 ∈ 𝐶1[𝑎, 𝑏] then: 

𝐿(𝒇) = sup
∆
𝐿(𝒇, ∆) = lim

‖∆‖→0
𝐿(𝒇, ∆) = lim

𝑛→∞
∑‖

𝒇(𝑡𝑖) − 𝒇(𝑡𝑖−1)

∆𝑡
‖ ∆𝑡

𝑛

𝑖=1

= න‖𝒇′(𝑡)‖𝑑𝑡

𝑏

𝑎

 

With 𝑡 as a time parameter, 𝒇′(𝑡) will be the velocity vector, ‖𝒇′(𝑡)‖ is the 

speed at time 𝑡 and 𝐿(𝒇) is the arc length in coordinate units. A change of 

time unit, reparametrization, will not change the arc length. 

A curve described by a graph 𝑦 = 𝑔(𝑥) with 𝑥 ∈ [𝑎, 𝑏] has a parametrization 

𝑡 ↷ 𝒇(𝑡) = (𝑡, 𝑔(𝑡)) → 𝒇′(𝑡) = (1, 𝑔′(𝑡)) → ‖𝒇′(𝑡)‖ = √1 + (𝑔′(𝑡)2. 

𝐿(𝑔)
𝑎≤𝑥≤𝑏

= න√1 + (𝑔′(𝑥))2𝑑𝑥

𝑏

𝑎

= න(1 + (𝑑𝑦/𝑑𝑥)2)1 2Τ 𝑑𝑥

𝑏

𝑎

 

By definition 𝜋 ≡ Circumference/Diameter of the unit circle 𝑥2 + 𝑦2 = 1. 

𝑔(𝑥) = (1 − 𝑥2)1/2      →      𝜋 = න
𝑑𝑥

√1 − 𝑥2

1

−1

 

Every continuous curve is not rectifiable, curves with no upper bound for 

their polygonal paths are of infinite length. The Koch curve is defined 

iteratively by replacing the middle third of each line segment with an 

equilateral outgrowth. It converges to a continuous curve with infinite length. 

𝐾0 ∶ 𝐿 = 1 

𝐾1 ∶ 𝐿 = 4/3 

𝐾2 ∶ 𝐿 = (4/3)
2 

𝐾𝑛: 𝐿 = (4/3)
𝑛 → ∞ 

as n → ∞  An infinite boundary of a finite area. 

Koch 

snowflake 
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It’s high time that we looked at some actual integration but for that we need 

functions and antiderivatives which we have not very many of so far but we 

do have 𝐷𝑥𝑛 = 𝑛𝑥𝑛−1 which leads to 𝐷−1𝑥𝑛 = 𝑥𝑛+1/(𝑛 + 1) + 𝐶. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration  and summation  share so many properties besides their use of 

different versions of S that one wonders if there could be a way to unite them 

and cover both discrete and continuous versions of a statement with one 

proof. There is, it’s called the Riemann-Stieltjes integral and you get it by 

simply replacing the measure of each interval in a partition. Instead of using 

the length ∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1, use another measure 𝛼(𝑥) and let each interval 

get a weight 𝛼(𝑥𝑘) − 𝛼(𝑥𝑘−1). It’s most natural to let 𝛼(𝑥) be an increasing 

function but it does not have to be. 

න 𝑓𝑑𝛼
𝑏

𝑎

= න 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎

= lim
‖∆‖→0

∑ 𝑓(𝜉𝑘)(𝛼(𝑥𝑘) − 𝛼(𝑥𝑘−1))
𝑛

𝑘=1
 

The Gini coefficient 

The Gini coefficient G is used to measure spread in the distribution of income or 

wealth. It is based on the Lorentz function 𝐿: [0,1] → [0,1] with 𝐿(𝑥%) being the 

needed share of people (measured from below) for their summed income/wealth to 

equal 𝑥% of the total income of the group. 𝐿(𝑥) is an increasing function and 

assuming no negative income/wealth 𝐿(0)=0 and 𝐿(1)=1. 

Complete equality (Everybody has the same income/wealth): 𝐿(𝑥) = 𝑥. 

Maximal inequality (One person earns/owns everything): 𝐿(𝑥) = [𝑥 = 1].  

 
Gini coefficients of income in different countries varies from 0.2 to 0.6 which 

corresponds to the Gini coefficients of 𝑥1.5 and 𝑥4. World Gini coefficients has 

been estimated to be in decline, since 1988 from G=0.8 to G=0.65 or 𝑥9 → 𝑥4.7. 

𝐺 ≡ 𝐴/(𝐴 + 𝐵) = 2𝐴 = 1 − 2𝐵 

𝐴 and 𝐵 are the areas in the diagram. 

0 ≤ 𝐺 ≤ 1 

𝐿(𝑥) = 𝑥𝑛, 𝐵 = න 𝑥𝑛𝑑𝑥
1

0

, 𝐺 =
𝑛 − 1

𝑛 + 1
 

Any distribution with the same area A 

has the same Gini coefficient. 
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When a measure function 𝛼(𝑥) has a discontinuity with a jump at 𝑥0 ∈ [𝑎, 𝑏] 

it gives an extra contribution to the RS-integral: 

𝑗 = ( lim
𝑥↘𝑥0

𝛼(𝑥) − lim
𝑥↗𝑥0

𝛼(𝑥)) ≠ 0  ⇒ 𝑗 ⋅ 𝑓(𝑥0) added to න 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎

 

Ordinary summation becomes a special case of RS-integration: 

∑𝑓(𝑘)

𝑛

𝑘=1

= න 𝑓𝑑𝛼
𝑛

0

  With 𝛼(𝑥) = ⌊𝑥⌋ 

This makes the RS-integral extra suited for probability theory where a real-

valued random variable 𝑋 can range over both discrete and continuous parts. 

The probability distribution of 𝑋 is given by the cumulative distribution 

function (CDF) with 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) (Probability of 𝑋 ≤ 𝑥). 

P(𝑎 < 𝑥 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) → P(𝑎 < 𝑥 ≤ 𝑏) = න 𝑑𝐹𝑋

𝑏

𝑎

 

The expectation value 𝑋 or more generally of 𝑔(𝑋) becomes: 

E(𝑔(𝑋)) = න 𝑔(𝑋)𝑑𝐹
+∞

−∞

 

When 𝑋 range over a continuous range and 𝐹(𝑥) is continuous with a 

derivative 𝑓 = 𝑑𝐹 𝑑𝑥Τ = the probability density function (PDF) we get 

P(𝑎 < 𝑥 ≤ 𝑏) = න 𝑓𝑑𝑥
𝑏

𝑎

  and   E(𝑔(𝑋)) = න 𝑔 ⋅ 𝑓𝑑𝑥
+∞

−∞

 

where the density function 𝑓 = 𝐹′ acts like a weight function. 

 

 

 

 

 

 

 

Fig. 3.7.6 Probability densities 𝑓 = 𝐹′ and their cumulative distributions 𝐹. 

𝛼′(𝑥) =
𝑑𝛼

𝑑𝑥
suggestsන 𝑓𝑑𝛼

𝑏

𝑎

= න 𝑓𝛼′𝑑𝑥
𝑏

𝑎

 

This is true if 𝑓 ∈ C0 and 𝛼 ∈ C1. A weaker demand on 𝛼(𝑥) that includes 

jumps and guarantees existence of ∫ 𝑓𝑑𝛼
𝑏

𝑎
 for every 𝑓 ∈ C0 is that 𝛼(𝑥) is of 

bounded variation. Which means that the vertical distance covered on the 

graph when going from (𝑎, 𝛼(𝑎)) to (𝑏, 𝛼(𝑏)) is finite. 
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Devil’s staircase 

The devil’s staircase also known as the Cantor 

function 𝑐(𝑥) is a continuous and increasing 

function from [0,1] to [0,1] which makes it a 

natural CDF of a random variable 𝑋 with values 

in [0,1]. What makes it interesting is that it has 

zero derivative almost everywhere. The PDF of 

𝑋, 𝑐′(𝑥) is zero at every point where it is defined 

which is a subset of [0,1] of total length one.  

To define 𝑐(𝑥), let 𝑥 = (0. 𝑥1𝑥2𝑥3… )3 , 𝑥𝑖 ∈ {0,1,2} 

1. Truncate 𝑥 by replacing all digits after the first 1 by zeros. 

2. Replace all 𝑥𝑖 = 2 with 𝑥̃𝑖 = 1. 

3. Reinterpret the digit sequence as a base 2 representation. 

𝑥 ↷ 0. 𝑥1…𝑥𝑛100… (𝑥𝑖 ∈ {0,2}) ↷ 0. 𝑥̃1𝑥̃2…(𝑥̃𝑖 ∈ {0,1}) ↷ 𝑐(𝑥) 

The definition makes 𝑐(𝑥) flat in the middle third and the definition is 

self-similar for the surrounding thirds, just a move forward one step in the 

digit sequence just as in the definition of the Cantor set. 𝑐(𝑥) is constant 

outside the Cantor set. The arc length of the devil’s staircase is 2 as it 

would be for the graph of any staircase from (0,0) to (1,1) but there are 

no steps or rather an uncountable number of steps of height zero. 

The cantor function is uniformly continuous since its domain is a compact 

set but it fails to be absolutely continuous, an even stronger smoothness 

property defined by: 

For any finite set of disjoint intervals (𝑥𝑘 , 𝑦𝑘) in the domain of 𝑓(𝑥): 

∀𝜀∃𝛿:∑ (𝑦𝑘 − 𝑥𝑘)
𝑘

< 𝛿 ⟹∑ |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)|
𝑘

< 𝜀 

Absolute continuity is important in generalizing the fundamental theorem 

of calculus that connects derivation with Riemann-integration. With 

Lebesgue integration on the not absolutely continuous Cantor function: 

1 = න1𝑑𝑐(𝑥)

1

0

≠ න𝑐′(𝑥)𝑑𝑥

1

0

= 0 

A contiuous and non-constant function on [𝑎, 𝑏] with a derivative equal to 

zero outside a set of measure zero is called a singular function. 

𝑐(𝑥) 

Fig. 3.7.7 Devil’s staircase 
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A function 𝑓(𝑥) has bounded variation if 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) where both 

g(𝑥) and ℎ(𝑥) are monotone, (increasing or decreasing). 

Another example of RS-integrals comes from physics and finding the 

balancing point on a rod [0, 𝐿] along the 𝑥-axis with mass 𝑚(𝑥) for the 

section [0, 𝑥], 𝑚(𝑥) = 0 for 𝑥 < 0 and 𝑚(𝑥) = 𝑀 = ∫ 𝑚(𝑥)𝑑𝑥
𝐿

0
 for 𝑥 > 𝐿. 

The torque or moment around 𝑥 for a point mass 𝑚𝑗 at 𝑥𝑗 is proportional to 

𝑚𝑗(𝑥 − 𝑥𝑗). If 𝑥 is the balancing point for 𝑛 masses ∑ 𝑚𝑗(𝑥 − 𝑥𝑗)
𝑛
𝑘=1 = 0 

and with both a continuous and discrete distribution for 𝑚(𝑥) we get: 

𝑥 =
∫ 𝑥𝑑𝑚
𝐿
0

∫ 𝑑𝑚
𝐿
0

=
∫𝑥𝑚′𝑑𝑥

𝑀
  (𝑚′(𝑥) is linear density for a continuous distribution) 

In ℝ𝑛 this translates to a mass-center where all gravity torques are balanced. 

With local density 𝜌(𝒓) given by 𝐼Ω, the indicator function for a bounded set 

Ω ⊂ ℝ𝑛 we get the geometric center of an object Ω. 

𝒓𝑀𝐶 =
∫𝒓𝜌(𝒓)𝑑𝒓

𝑀
     𝒓𝐺𝐶 =

∫𝒓𝐼Ω𝑑𝒓

∫ 𝐼Ω𝑑𝒓
=
∫ 𝒓𝑑𝒓
Ω

Vol(Ω)
 

Theorem. (Riesz’ theorem) 

If 𝐿: 𝐶0[𝑎, 𝑏] → ℝ is a positive linear functional. 

Functional: a function from a vector space (function space) to its scalars. 

Linear: 𝐿(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐿(𝑓) + 𝛽𝐿(𝑔) 

Positive: ∀𝑥 ∈ [𝑎, 𝑏]: 𝑓(𝑥) ≥ 0  ⇒   𝐿(𝑓) ≥ 0 

Then there is an increasing function 𝛼: [𝑎, 𝑏] → ℝ s.t. 𝐿(𝑓) = ∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
. 

A simpler version of this states that if 𝐿 is a positive linear functional with 

𝐿(𝑓) = (𝑑 − 𝑐) for all 𝑓(𝑥) = {
1 if 𝑥 ∈ [𝑐, 𝑑] ⊆ [𝑎, 𝑏]

0  if 𝑥 ∉ [𝑐, 𝑑] ⊆ [𝑎, 𝑏]
 then 𝐿(𝑓) = න 𝑓𝑑𝑥

𝑏

𝑎

 

This can be applied to work. If we require that 𝑊 = 𝐹𝑑 when a constant 

force 𝐹 is applied for a distance 𝑑 and that work depends linearly on the force 

then the work of a varying force between 𝑎 and 𝑏 must be 𝑊 = ∫ 𝐹𝑑𝑥
𝑏

𝑎
. 

The Cauchy-Schwarz inequality is one of the most important inequalities in 

mathematics and a good example of how to use the RS-integral to cover both 

continuous and discrete versions. 

𝑢𝑖 , 𝑣𝑖 ∈ ℝ:  (∑ 𝑢𝑖𝑣𝑖
𝑛
𝑖=1 )2 ≤ ∑ (𝑢𝑖)

2𝑛
𝑖=1 ∑ (𝑣𝑖)

2𝑛
𝑖=1   

Equality iff ∃(λ, μ) ≠ (0,0)

𝜆𝑢𝑖 + 𝜇𝑣𝑖 = 0
  

𝑓, 𝑔 ∈ C0[𝑎, 𝑏]: (න 𝑓𝑔
𝑏

𝑎

𝑑𝑥)

2

≤ න 𝑓2𝑑𝑥
𝑏

𝑎

න 𝑔2𝑑𝑥
𝑏

𝑎

    𝜆𝑓(𝑥) + 𝜇𝑔(𝑥) = 0 
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Both cases of Cauchy-Riemanns inequality are covered in the following 

where 𝛼(𝑥) is increasing and 𝑓, 𝑔 ∈ 𝐶0[𝑎, 𝑏] 

න (𝑓(𝑥))
2
𝑑𝛼(𝑥)

𝑏

𝑎⏟          
𝐴

⋅ න (𝑔(𝑥))
2
𝑑𝛼(𝑥)

𝑏

𝑎⏟          
𝐵

≥ (න 𝑓(𝑥)𝑔(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎

)
⏟              

𝐶

2

 

Proof. 

∀𝜆 ∈ ℝ: (𝜆𝑓 + 𝑔)2 ≥ 0 ⇒ ∫ (𝜆𝑓 + 𝑔)2𝑑𝛼 ≥ 0 ⇒
𝑏

𝑎
𝜆2𝐴 + 2𝜆𝐶 + 𝐵 ≥ 0 𝐴 >

0 ⇒ ∀𝜆: (𝐴𝜆 + 𝐶)2 + 𝐴𝐵 − 𝐶2 ≥ 0 ⇒ 𝐴𝐵 ≥ 𝐶2  (choose 𝜆 = −𝐶/𝐴) 

𝐴 = 0 ⇒ ∀𝜆: 2𝜆𝐶 + 𝐵 ≥ 0 ⇒ 𝐶 = 0 ⇒ 𝐴𝐵 ≥ 𝐶2 

Equality iff 𝜆𝑓 + 𝑔 ≡ 0 ∎ 

3.8 Exponentiation and Logarithms 

To handle 𝑥𝑦 for arbitrary real numbers we need to know how to define and 

calculate a number like 𝜋𝜋 but so far we have not even given a proper 

definition of muliplication of real numbers. To do this we start with the 

rational numbers where the operators +,−,×,÷ are easily defined. One way 

to define ℝ is as equivalence classes of Cauchy sequences 𝑥 = [(𝑥𝑛)] where 

𝑥𝑛 ∈ ℚ and |𝑥𝑚 − 𝑥𝑛 | → 0 as min(𝑚, 𝑛) → ∞. A number can be 

represented with a sequence from its decimal representation 𝜋 =

[(3, 3.1, 3.14, 3.141, 3.1415, 3.14159… )]. 

Without going into the details it is now possible to introduce arithmetic on ℝ 

by using Cauchy sequences 𝑥 + 𝑦 ≡ [(𝑥𝑛 + 𝑦𝑛)], 𝑥 ⋅ 𝑦 ≡ [(𝑥𝑛 ⋅ 𝑦𝑛)] and 

𝑥/𝑦 ≡ [(𝑥𝑛/𝑦𝑛)] (𝑦 ≠ 0) where a representation with 𝑦𝑛 ≠ 0 is chosen. This 

method runs into problem for 𝑥𝑦 since 𝑥𝑛
𝑦𝑛 can be irrational, 21/2 ∉ ℚ. With 

arithmetic on ℝ we can introduce both polynomials 𝑃(𝑥) = ∑ 𝑎𝑘𝑥
𝑘𝑁

𝑘=0  and 

rational functions 𝑅(𝑥) = 𝑃(𝑥)/𝑄(𝑥) defined wherever 𝑄(𝑥) ≠ 0. 𝑥𝑛 is 

strictly increasing for 𝑛 ∈ ℤ+and 𝑥 ≥ 0 with range  [0,∞). Define 𝑥1/𝑛 for 

𝑛 ∈ 𝑍+as the positive 𝑦 for which 𝑦𝑛 = 𝑥 and then 𝑥𝑚/𝑛 will be defined for 

all 𝑚/𝑛 ∈ ℚ as (𝑥1\𝑛)
𝑚

. Any definition of 𝑥𝑦 should match this for 𝑦 ∈ ℚ. 

The way forward is is to look at the one power function 𝑦 = 𝑥𝑘 for which we 

lack an antiderivative, 𝐷−1(𝑥𝑘) = 𝑥𝑘+1/(𝑘 + 1) does not work for 𝑘 = −1. 

We know it exists and equals 𝑓(𝑥) = ∫ (1/𝑡)𝑑𝑡
𝑥

1
+ 𝐶 so let us give it a name. 

Definition. (Natural logarithm) 

ln:ℝ+ → ℝ is defined by ln(𝑥) ≡ න
1

𝑡

𝑥

1

𝑑𝑡 
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Transcendence of 𝑒, 𝜋 and possibly 𝑒 + 𝜋 and 𝑒 ⋅ 𝜋. 

A transcendental number is not the root of a polynomial with rational 

coefficients. Both 𝑒 and 𝜋 were proved to be transcendental in the end of 

the 19th century. To this date no proof has been given that either 𝑒 + 𝜋 or 

𝑒 ⋅ 𝜋 should be transcendental, it has not even been proved that they are 

irrational. If a proof appeared it would probably be long and difficult, 

only understood by experts in the field but a very simple proof can be 

given that both can’t be rational (or algebraic) because if they were then 

𝑃(𝑥) = (𝑥 − 𝑒)(𝑥 − 𝜋) = 𝑥2 − (𝜋 + 𝑒)𝑥 + 𝜋 ⋅ 𝑒 would be polynomial 

with algebraic coefficients and transcendental roots. 

Lindemann’s proof that 𝜋 is not algebraic starts with showing that any 

number 𝑒𝑥 is transcendental when 𝑥 is algebraic and not zero, 𝑒𝜋𝑖 = −1. 

Alexander Golfand showed that 𝑥𝑦 is transcendental if 𝑥 ∈ 𝔸 ∖ {0,1} and 

𝑦 ∈ ℂ ∖ ℚ which implies that 2√2 and 𝑒𝜋 = (−1)−𝑖 are transcendental. 

Theorem. 

1. ln(𝑥) is strictly increasing 

2. lim
ℎ→0

ln(1 + ℎ)

ℎ
= 1 

3. ln(𝑥𝑦) = ln(𝑥) + ln(𝑦) 

4. 𝑓(𝑥) = ln(𝑥) is surjective. 

Proof. 

1. By definition of ln(𝑥): 𝐷(ln(𝑥)) = 1/𝑥 > 0 → ln(𝑥) is stricly increasing. 

2. ln(1) = 0: lim
ℎ→0

ln(1 + ℎ)

ℎ
= lim

ℎ→0

ln(1 + ℎ) − ln(1)

ℎ
=
𝑑

𝑑𝑥
(ln(𝑥))

⏟      
1/𝑥

|

𝑥=1

= 1 

3. ln(𝑥𝑦) = න
𝑑𝑡

𝑡

𝑥𝑦

1

= න
𝑑𝑡

𝑡

𝑥

1

+න
𝑑𝑡

𝑡

𝑥𝑦

𝑥

[
𝑢 = 𝑡/𝑥
𝑑𝑡 = 𝑥𝑑𝑢

] = ln(𝑥) + න
𝑑𝑢

𝑢

𝑦

1

= ln(𝑥) + ln(𝑦) 

4. ln(𝑥𝑘) = ln(𝑥) + ln(𝑥𝑘−1) → ln(𝑥𝑘) = 𝑘 ⋅ ln(𝑥) 

  

ln2 > 0 → ln2𝑘 = 𝑘ln2 → ∞ as 𝑘 → ∞

ln
1

2
< 0 → ln (

1

2
)
𝑘

= −𝑘ln2 → −∞ as 𝑘 → ∞
}
ln(𝑥)  is continuous → its range

is an interval, must be all of ℝ.
 

Definition. (Euler’s number) 

The unique real number that satisfies ln 𝑥 = 1 is denoted 𝑒. 

Euler’s number is irrational with numerical value 𝑒 = 2.718281828… 
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Definition. (Logarithm and exponential function with base 𝑏) 

log𝑏 ∶ ℝ
+ → ℝ is defined by log𝑏(𝑥) ≡

ln (𝑥)

ln (𝑏)
 for 𝑏 > 0 and 𝑏 ≠ 1 

exp𝑏 ∶ ℝ → ℝ+ is defined as the inverse of log𝑏 . 

Most frequent are base 2=binary logarithms, base 𝑒=natural logarithms and 

base 10=common logaritms=lg (𝑥). Since log𝑏 is continuous so is exp𝑏 . 

Theorem. 

exp𝑏(𝑥) = 𝑏
𝑥 when 𝑥 ∈ ℚ 

Proof. 

log𝑏 𝑥𝑦 = log𝑏 𝑥 + log𝑏 𝑦 → log𝑏 𝑥
𝑚 = 𝑚 log𝑏 𝑥 for 𝑚 ∈ ℤ 

log𝑏 𝑦 = 𝑛 log𝑏 𝑦
1/𝑛 → log𝑏 𝑦

1/𝑛 =
1

𝑛
log𝑏 𝑦 for 𝑛 ∈ ℤ+ ( by def. of 𝑦1/𝑛 ) 

→ log𝑏 𝑥
𝑚/𝑛 =

𝑚

𝑛
log𝑏 𝑥 for 𝑚/𝑛 ∈ ℚ 

𝑏𝑟 ↷ 𝑟 by log𝑏 ⟹ 𝑟 ↷ 𝑏𝑟 by exp𝑏  when 𝑟 ∈ ℚ ∎ 

Definition. 

𝑏𝑥 ≡ exp𝑏(𝑥) when 𝑥 ∈ ℝ   (𝑏 ∈ ℝ+ ∖ {1}) 

 

 

 

 

 

 

 

Logarithms are of immense historical importance due to the fact that  

log 𝑥𝑦 = log 𝑥 + log 𝑦 which sets up a close relation between multiplication 

and addition; in technical terms, an isomorphism log: ℝ+ → ℝ between the 

groups (ℝ+,×) and (ℝ,+). To do a multiplication 𝑥𝑦 before the time of 

calculators you would look up their logarithms in a table and add them which 

is much easier than doing a muliplication and then translate back by using the 

table backwards to get the result: exp(log 𝑥𝑦 = log 𝑥 + log 𝑦) = 𝑥𝑦. 

The word logarithm has Greek roots, logos meaning proportion and arithmos 

meaning number. The term stems from John Napier who introduced them in 

a book from 1614 Mirifici Logarithmorum Canonis Descriptio (Description 

of the Wonderful Rule of Logarithms). Natural logarithms are more natural 

than logarithms of other bases since it comes from the simplest function 1/𝑥. 

log𝑏 𝑥𝑦 = log𝑏 𝑥 + log𝑏 𝑦 𝑏𝑥+𝑦 = 𝑏𝑥 ⋅ 𝑏𝑦 

log𝑏 𝑥
𝑦 = 𝑦 log𝑏 𝑥 (𝑏𝑥)𝑦 = 𝑏𝑥𝑦 

log𝑎 𝑥 =
log𝑏 𝑥

log𝑏 𝑎
 𝑎𝑥 = 𝑏𝑥⋅𝑙𝑜𝑔𝑏𝑎 

log𝑏 𝑏
𝑥 = 𝑥 𝑏log𝑏 𝑥 = 𝑥 
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The symbol 𝑒 for the base of the natural logarithm comes from Euler. He 

used the following definitions for 𝑓(𝑥) = 𝑒𝑥 and 𝑓−1(𝑥) = ln 𝑥: 

𝑒𝑥 = lim
𝑛→∞

(1 +
𝑥

𝑛
)
𝑛

ln 𝑥 = lim
𝑛→∞

𝑛(𝑥1/𝑛 − 1) 

The definition of ln 𝑥 with integration gives the following derivatives: 

𝐷(ln 𝑥) = 𝐷 (න
𝑑𝑡

𝑡

𝑥

1

) =
1

𝑥
 

𝑑(𝑒𝑥)

𝑑𝑥
=

1

𝑑(ln 𝑦)/𝑑𝑦
=

1

1/𝑦
= 𝑦 = 𝑒𝑥 

3.9 Power functions and Roots 

After exponential functions 𝑓(𝑥) = 𝑏𝑥, 𝑏 ∈ ℝ+ and 𝐷𝑓 = ℝ the next step is 

to investigate power functions 𝑓(𝑥) = 𝑥𝑎 ≡ 𝑒𝑎 𝑙𝑛 𝑥 with 𝑎 ∈ ℝ and 𝐷𝑓 = ℝ
+. 

This procedure is not practical for calculations since ln 𝑥 was defined by a 

computationally expensive integration and to find 𝑒𝑐 with our definition we 

must solve the equation ln 𝑥 − 𝑐 = 0.  

Newton’s method to find a zero of a function, 𝑓(𝑥) = 0. 

 

 

 

 

 

 

 

 With proper conditions lim
𝑛→∞

𝑥𝑛 = 𝑥̂ and 𝑓(𝑥̂) = 0. Some ways it can 

go wrong is if 𝑓′(𝑥𝑘) = 0 for some 𝑘, if a cycle occurs 𝑥𝑖=𝑥𝑗 for 𝑖 ≠ 𝑗, or if 

the derivative misbehaves around the root. This can lead to divergence of 

(𝑥𝑛)1
∞ no matter how close 𝑥0 is to 𝑥̂.  

 𝑓(𝑥) = |𝑥|𝛼  , 0 < 𝛼 < ½ 𝑓(𝑥) = {
0 if 𝑥 = 0 else
𝑥 + 𝑥2 sin(2𝑥−1)

Slope at 𝑥𝑛 

𝑓′(𝑥𝑛) =
𝑓(𝑥𝑛)

𝑥𝑛 − 𝑥𝑛+1
 

Initiate with a guess 𝑥0 and iterate 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
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If an iteration starting at 𝑥0 converges 

to a root 𝑥̂ then 𝑥0 is said to be in the 

basin of attraction, ℬ(𝑥̂) of that root. 

Newton’s method can be used on 

complex functions which can lead to 

very complex basins of attraction in 

the complex plane. 

𝑓(𝑧) = 𝑧5 − 1 → 𝑧𝑛+1 =
4𝑧𝑛

5
+

1

5𝑧𝑛
4  

All five basins of attraction have the 

same boundary, 𝜕ℬ(𝑧̂1) =…= 𝜕ℬ(𝑧̂5). 

The multiplicity of a root determines the speed of convergence. A root 𝑥̂ 

is of multiplicity 𝑘 if 𝐷𝑗𝑓(𝑥̂) = 0 for 𝑗 = 0,… , 𝑘 − 1 and 𝐷𝑘𝑓(𝑥̂) ≠ 0. 

𝑥𝑘 = 0 has a root 𝑥̂ = 0 with multiplicity 𝑘. The normal case with a root 

of multiplicity one leads to quadratic convergence which means that the 

number of correct digits in 𝑥𝑛 after a while will tend to double for each 

iteration. Examples: 

𝑎/𝑏 can be calculated without using division, 𝑎/𝑏 = 𝑎 ⋅ 𝑏−1 and the 

reciprocal 1/𝑏 is a root of 𝑓(𝑥) = 1/𝑥 − 𝑏 → 𝑥𝑛+1 = 2𝑥𝑛 − 𝑏𝑥𝑛
2. 

1/3: 𝑥0 = 0.5 → 𝑥5 = 0.33333333325… 

With logarithmic tables division can be done with just subtraction and no 

multiplication, 𝑎/𝑏 = 𝑒(ln𝑎−ln 𝑏) but a calculation of ln 𝑥 is needed. 

𝑎𝑏 is a root of 𝑓(𝑥) = 𝑥1\𝑏 − 𝑎

D(𝑥𝛼) = D(𝑒𝛼 ln 𝑥) = ⋯ = 𝛼𝑥𝛼−1
} → 𝑥𝑛+1 = (1 − 𝑏)𝑥𝑛 + 𝑎𝑏𝑥𝑛

(1−1/𝑏) 

This gives an efficient way of calculating 𝑎1/𝑞 for 𝑞 ∈ ℤ+, 

𝑓(𝑥) = 𝑥𝑞 − 𝑎 → 𝑥𝑛+1 =
𝑞−1

𝑞
𝑥𝑛 +

𝑎

𝑞
𝑥𝑛
1−𝑞 . 

 

With 𝑎 = 2, 𝑞 = 2, 𝑥0 = 1.5 and 𝑥𝑛+1 = 𝑥𝑛/2 + 1/𝑥𝑛 

𝑥4 = 1.4142135623730950488016896…

21/2 = 1.4142135623730950488016887…
 

 

Rewriting the exponential laws gives the power laws: 

𝑥𝑎𝑥𝑏 = 𝑥𝑎+𝑏  (𝑥𝑎)𝑏 = 𝑥𝑎𝑏 (𝑥𝑦)𝑎 = 𝑥𝑎𝑦𝑎    𝑥, 𝑦 ∈ ℝ+  𝑎, 𝑏 ∈ ℝ 

With 𝑥𝛼 ≡ 𝑒𝛼 ln𝑥 the power functions 𝑓(𝑥) = 𝑥𝑎 gets 𝐷𝑓 = ℝ
+ from ln 𝑥. 

This definition belongs to analysis with concepts such as real numbers, limits 

and integration. 

Fig. 3.9.1  Basins of attraction 
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If algebra and analysis are looked upon as two parts of the mathematical 

landscape then they overlap in the definition of exponentiation. We have seen 

that 𝑥𝛼 ≡ 𝑒𝛼 ln 𝑥 and 𝑥𝑝/𝑞 ≡ (𝑥1/𝑞)𝑝 with 𝑦 = 𝑥1/𝑞 defined by extraction of 

positive roots from 𝑦𝑞 = 𝑥 give the same result for positive 𝑥. The algebraic 

definition gives a natural extension to negative 𝑥. 

𝛼 ∈ ℤ ∶ 𝑓(𝑥) = 𝑥𝑛 → {
𝑓(−𝑥) = 𝑓(𝑥) if 𝑛 is even, 𝑓 is an even function.

𝑓(−𝑥) = −𝑓(𝑥) if 𝑛 is odd, 𝑓 is an odd function.
 

 

 

 

 

 

 

 

𝛼 ∈ ℚ ∖ ℤ → 𝑥𝛼 = (𝑥1/𝑛)𝑚 with 𝑛 ∈ {2,3, … } and where 𝑥1/𝑛 is defined by 

root extraction from 𝑟𝑛 = 𝑥. Such a root is callen an 𝑛th root. To make 𝑥1/𝑛 

a single-valued function, one of the roots must be chosen. It’s called the 

principal 𝒏th root and it’s denoted √𝑥
𝑛

. When 𝑛 = 2 it’s the square root and 

the index is usually dropped, for 𝑛 = 3 it’s the cube root. The symbol √  is 

called radical or radix with radicand as content. Its origin is uncertain but it 

may stem from the letter r from the latin word radix that means root. 

For positive 𝑥 the choice of root is natural √𝑥
𝑛

= 𝑒(ln 𝑥)/𝑛 ∈ ℝ+. For negative 

𝑥 and odd 𝑛, the negative root is sometimes seen  √−|𝑥|
𝑛

= −√|𝑥|
𝑛

 but just 

as often you see the complex root with least argument in [0,2𝜋). With 𝑧 =

𝑅𝑒𝑖𝜃 and 𝜃 ∈ [0,2𝜋) one gets √𝑧
𝑛

= 𝑅1/𝑛𝑒𝑖𝜃/𝑛. No choice can extend 

(𝑥𝑦)𝑎 = 𝑥𝑎𝑦𝑎 to negative 𝑥, 𝑦.    (−1)1/2 ⋅ (−1)1/2 ≠ (−1 ⋅ (−1))1/2 

Just as rational numbers 𝑝/𝑞 are easy to 

distinguish by presenting them in reduced 

form with (𝑝, 𝑞) = 1 there is a simplifed 

form for expressions with radicals having: 

 no factor in the radicand 

of √⋅
𝑛

 with a power ≥ 𝑛. 

 no fractions in the radical. 

 no radicals in the denominator 

√16𝜋/5
3

√3
=
2

15
⋅ √3 ⋅ √50𝜋

3
 

𝒚 = 𝒙𝟐 

𝒚 = 𝒙𝟒 

𝒚 = 𝒙𝟔 

𝒚 = 𝒙 

𝒚 = 𝒙𝟑 

𝒚 = 𝒙𝟓 

𝒚 = 𝒙−𝟏 

𝒚 = 𝒙−𝟑 

𝒚 = 𝒙−𝟓 

𝒚 = 𝒙−𝟐 

𝒚 = 𝒙−𝟒 

𝒚 = 𝒙−𝟔 
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Expressions with sums of radicals in the denominator or nested radicals are 

much harder to simplify, if at all possible. 

𝑥3 + 𝑝𝑥 + 𝑞 = 0 → One root is 𝑥 = √−
𝑞

2
+ √

𝑞2

4
+
𝑝3

27

3

+ √−
𝑞

2
−√

𝑞2

4
+
𝑝3

27

3

 

√√28
3

− √27
3

= (√98
3

− √28
3

− 1)/3 

An algorithm to decide when a nested radical can be denested was first given 

in 1989 by Susan Landau, the Landau algorithm. 

𝑦=𝑒𝑥 and 𝑦=ln 𝑥 are examples of non-algebraic functions or transcendental 

functions, they don’t satisfy a polynomial equation ∑ 𝑎𝑘(𝑥)𝑦
𝑘𝑛

𝑘=0 = 0 where 

𝑎𝑘(𝑥) ∈ ℚ[𝑋] (polynomials with rational coefficients). Polynomial functions 

and rational functions with rational coefficients are algebraic functions of 

degree 𝑛=1 since they are solutions to 𝑦 − 𝑃(𝑥) = 0 and 𝑄(𝑥)𝑦 − 𝑃(𝑥) = 0. 

The 𝑛-th root of a polynomial is algebraic of degree 𝑛, 𝑦𝑛 − 𝑃(𝑥) = 0. Care 

must be taken for cases with multiple solutions like 𝑦2 − 𝑥2 = 0, 𝑦 = |𝑥| is 

not algebraic but a combination of two different branches 𝑦 = ±𝑥. 

Every function obtained from a finite sequence of steps using +,−,×,÷ and 

√⋅
𝑛

 is algebraic but there are also algebraic functions that do not belong to this 

group. An example is the Bring radical 𝑦(𝑥) which satisfies 𝑦5 + 𝑦 + 𝑥 = 0 

and where 𝑦(1) is the unique real root of 𝑦5 + 𝑦 + 1 = 0. By Galois theory 

it can’t be solved in closed form with radicals. Other examples of trans-

cendental functions are the trigonometric functions and their inverses. 

3.10 Trigonometry 

Trigonometry is an ancient branch of mathematics. The word comes from the 

Greek terms, trigon meaning triangle and metron meaning measure. The 

corner stone of Euclidean geometry is the Pythagorean theorem of a right 

angled triangle that relates the hypothenuse to the catheti, 𝑐2 = 𝑎2 + 𝑏2. This 

was known long before the time of Pythagoras ~500 BC. Even older are the 

Sumerian roots of the common angle unit with 360° = 23 ⋅ 32 ⋅ 5 degrees for 

a complete turn. A very practical number with nice integer values for 

common angles like 10°, 15°, 30°, 45°, 60° and 90°. 

There are a lot of trigonometric function for 

calculating sides from angles of triangles but 

all of them can be expressed in terms of one of 

them. A good choice is to stick to sin, cos, tan 

and possibly sec 𝜃 ≡
1

cos 𝜃
 and cot 𝜃 ≡

1

tan 𝜃
. 

Unit circle 
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The first trigonometric table was made by Hipparchus’ in 140BC and the 

most famous is Ptolemy’s table of chords in Almagest from the 2nd century. 

In those days trigonometry was a tool for astronomy and spherical geometry. 

The definition of trigonometric functions can be given in terms of a right-

angled triangle or a unit circle to extend the range to all of ℝ. There are many 

choices for the definition of angles. One full turn could be 360°, 1 or 

anything else but there is only choice that is natural for calculus and that is 

radians, defined as arclength/radius for an angular sector. 𝜋 is defined as 

circumference/diameter which is a mistake since it makes 360° = 2𝜋 rad. 

Every formula of mathematics and physics with an underlying rotational 

symmetry contains 2𝜋 instead of 𝜋 as it would have been with a more natural 

definition of pi based on radius instead of diameter. 

𝑣 

𝑎 

𝑏 
𝑐 

𝑎2 + 𝑏2 = 𝑐2 

cos𝑣 ≡ 𝑎 𝑐Τ  

sin 𝑣 ≡ 𝑏/𝑐 

tan 𝑣 ≡ 𝑏/𝑎 

𝑣 = 𝑡/𝑎 rad 

 

𝑡 

Symmetries 

cos(𝑡 + 𝑛 ⋅ 2𝜋) = cos 𝑡 sin(𝑡 + 𝑛 ⋅ 2𝜋) = sin 𝑡 

cos(𝑡 + 𝜋) = −cos 𝑡 sin(𝑡 + 𝜋) = − sin 𝑡 

cos(−𝑡) = cos 𝑡 sin(−𝑡) = − sin 𝑡 

cos(𝜋/2 − 𝑡) = sin 𝑡 sin(𝜋/2 − 𝑡) = cos 𝑡 

𝑥2 + 𝑦2 = 12 → 

cos2 𝑡 + sin2 𝑡 = 1 
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The inverse trigonometric functions arctrig(𝑥) are obtained after restricting 

the domain of trig(𝑥) to a suitable interval where it is strictly monotonic. The 

prefix arc- of the inverses is suitable since their ranges are over angles that 

are arc length of the unit circle. As for every inverse function their graph can 

be obtained by reflection in the diagonal line 𝑦 = 𝑥. 

Inverse trigonometric functions have an alternative notation which can be  

confusing since the exponent in trig−1(𝑥) = arctrig(𝑥) refers to composition 

of functions (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) whereas the exponent in trig𝑛(𝑥) refers 

to multiplication of functions (𝑓 ⋅ 𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥). 

To verify existence and properties of trigonometric functions we need a good 

definition and to do that we start by defining 𝑥 ↷ arcsin 𝑥. 

 

 

 

 

 

 

 

Extend the definition to [−1,1] with 1 ↷ 𝜋/2 and −1 ↷ −𝜋/2, arcsin 𝑥 is a 

continuous function, 𝐷(arcsin 𝑥) = (1 − 𝑥2)−1/2 > 0 → stricly increasing 

with domain [−1,1] and range [−𝜋 2, 𝜋 2ΤΤ ]. 

Define sin 𝑥 as the inverse of arcsin 𝑥 and let cos 𝑥 ≡ √1 − sin2 𝑥 . By using 

the symmetries from the previous page their domain can be extended from 

[−𝜋 2, 𝜋 2ΤΤ ] to all of ℝ without losing continuity, also their derivatives of all 

orders will remain continuous. 

𝑦 = sin 𝑥 →
𝑑

𝑑𝑥
(sin 𝑥) =

1
𝑑

𝑑𝑦
(arcsin 𝑦)

= √1 − 𝑦2 = cos 𝑥 

𝛼 + 𝛽 = arccos 𝑥 + arcsin 𝑥 = 𝜋 2Τ → 𝐷(cos 𝑥) = − sin 𝑥 

𝐷(sin 𝑥) = cos 𝑥 𝐷2(sin 𝑥) = − sin 𝑥 𝐷3(sin 𝑥) = − cos 𝑥 ⋯

𝐷(cos 𝑥) = − sin 𝑥 𝐷2(cos 𝑥) = − cos 𝑥 𝐷3(cos 𝑥) = sin 𝑥 ⋯
 

 

tan 𝑥 ≡ sin 𝑥 / cos 𝑥 with domain 

{𝑥 ∈ ℝ|𝑥 ≠ ±𝜋 2Τ + 𝑛 ⋅ 2𝜋} 

𝐷(tan 𝑥) = 1 + tan2 𝑥  

𝐷(arctan 𝑥) = 1/(1 + 𝑥2) 

𝑥 

𝑦 

1 

1 

𝛼 

𝛽 

𝑔(𝑥) = (1 − 𝑥2)1/2 

𝛽 

𝛽 = න√1 + (𝑔′(𝑢))
2
𝑑𝑢

𝑥

0

= න
𝑑𝑢

√1 − 𝑢2

𝑥

0

 

arcsin 𝑥 ≡ න
𝑑𝑢

√1 − 𝑢2

𝑥

0

 for 𝑥 ∈ (−1,1)  

𝜋 ≡ 2 ⋅ lim
𝑥→1

න
𝑑𝑢

√1 − 𝑢2

𝑥

0
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(Sign based on 𝜃) 

There are many trigonometric identities that are helpful for problem solving. 

Law of sines: 
sin 𝛼

𝑎
=

sin 𝛽

𝑏
=

sin𝛾

𝑐
=

2𝐴

𝑎𝑏𝑐
  

 

Area: 

𝐴 =
𝑎𝑏 sin 𝛾

2
=

𝑏𝑐 sin 𝛼

2
=

𝑐𝑎 sin 𝛽

2
= √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)  

 

Law of cosine (An extension of Pythagoras theorem): 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛾 

 

𝐓𝐫𝐢𝐠𝐨𝐧𝐨𝐦𝐞𝐭𝐫𝐢𝐜 𝐚𝐝𝐝𝐢𝐭𝐢𝐨𝐧 𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐬: 

sin(𝛼 ± 𝛽) = sin 𝛼 cos 𝛽 ± cos 𝛼 sin 𝛽 

cos(𝛼 ± 𝛽) = cos𝛼 𝑐𝑜𝑠𝛽 ∓ sin 𝛼 sin 𝛽 

tan(𝛼 ± 𝛽) =
tan 𝛼 ± tan𝛽

1 ∓ tan 𝛼 tan𝛽
 

These formulas are simply another way of saying that a rotation of 𝛼 degrees 

followed by a rotation of 𝛽 degrees equals one rotation of 𝛼 + 𝛽 degrees. 

(
cos 𝛽 − sin 𝛽
sin 𝛽 cos 𝛽

) (
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

) 𝑣 = (
cos(𝛼 + 𝛽) − sin(𝛼 + 𝛽)
sin(𝛼 + 𝛽) cos(𝛼 + 𝛽)

) 𝑣  

Another way of seeing this is to study 𝑒𝑧𝑒𝑤 = 𝑒𝑧+𝑤 for 𝑧, 𝑤 ∈ ℂ and look at 

the real and imaginary parts of 𝑒𝑖(𝛼+𝛽) = 𝑒𝑖𝛼𝑒𝑖𝛽. This also gives de Moivres 

formula: (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃). 

sin(𝑛𝜃) = ∑ (−1)
𝑘−1
2 (

𝑛
𝑘
)

𝑘 odd
𝑘≤𝑛

cos𝑛−𝑘 𝜃 sin𝑘 𝜃 → sin(2𝜃) = 2 sin 𝜃 cos 𝜃 

cos(𝑛𝜃) = ∑ (−1)𝑘/2 (
𝑛
𝑘
) cos𝑛−𝑘 𝜃 sin𝑘 𝜃

𝑘 even
𝑘≤𝑛

→ cos(2𝜃) = cos2 𝜃 − sin2 𝜃 

cos 2𝜃 = {
2 cos2 𝜃 − 1 → cos(𝜃 2Τ ) = (±)√(1 + cos 𝜃)/2 

1 − 2 sin2 𝜃 → sin( 𝜃 2Τ ) = (±)√(1 − cos 𝜃)/2
 

𝑎 

𝑏 𝑐  𝛼  

 𝛽   𝛾  
𝐴 =Area of triangle 

𝑠 = (𝑎 + 𝑏 + 𝑐)/2 

∑𝑎𝑖 cos(𝑥 + 𝜑𝑖)

𝑛

𝑖=1

+∑𝑏𝑘 sin(𝑥 + 𝜃𝑘)⏟        
𝑏̂𝑘 cos(𝑥+𝜃̂𝑘)

𝑚

𝑘=1

= 𝑅 cos(𝑥 + 𝜔) 
𝜔 
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Power reducing formula (examplified with for cos𝑛 𝜃 and 𝑛 odd). 

2𝑛 cos𝑛 𝜃 = 2∑(
𝑛
𝑘
) cos( (𝑛 − 2𝑘)𝜃)

𝑛−1
2

𝑘=0

 

Product-to-Sum Sum-to-Product 

2 cos𝛼 cos𝛽 = cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽) cos 𝛼 + cos 𝛽 = 2 cos(𝛼+𝛽
2
) cos(𝛼−𝛽

2
) 

2 sin 𝛼 sin 𝛽 = cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽) sin 𝛼 + sin 𝛽 = 2 sin(𝛼+𝛽
2
) cos(𝛼−𝛽

2
) 

2 sin 𝛼 cos𝛽 = sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) sin 𝛼 − sin 𝛽 = 2 sin(𝛼−𝛽
2
) cos(𝛼+𝛽

2
) 

2 cos𝛼 sin 𝛽 = sin(𝛼 + 𝛽) − cos(𝛼 − 𝛽) cos 𝛼 − cos 𝛽 = 2 sin(𝛼+𝛽
2
) sin(𝛽−𝛼

2
) 

2𝑛∏ cos𝛼𝑘
𝑛

𝑘=1
=∑cos(∑𝑒𝑘𝛼𝑘

𝑛

𝑘=1

) 

The values of trigonometric functions for some arguments should be known, 

others can be calculated when needed with the trigonometric identities. 

 

 

 

 

Rational fractions of a lap, 2𝜋𝑝/𝑞 are mapped by cos and sin to algebraic 

numbers, this follows from de Moivre’s formula, 𝑧 = 𝑒𝑖⋅2𝜋𝑝/𝑞 → 𝑧𝑞 − 1 = 0. 

Some of the oldest problems of mathematics are tied to the form of these 

values. Greek geometry was based on constructions with ruler and compass. 

The ruler corresponds to linear constructions and linear eauations while the 

compass corresponds to, (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 = 𝑟0 
2. Any point (𝑥, 𝑦) that 

can be constructed with these tools in a finite number of steps must be based 

on +,−,×,÷ and √⋅. Examples of such problems are: 

• Drawing a square with the same area as a circle (𝑟 = 1 → 𝑠 = √𝜋). 

• Drawing a cube with twice the volume of a given cube (𝑠 = 1 → 𝑆 = 21/3). 

• For which 𝑛 can you construct a regular 𝑛-gon. Is the 7-gon constructible? 

• Divide a given angle into three equal angles. Can 60° be trisected? 

For 2000 years constructions were sought. Now we know that they can not 

exist. √𝜋 and 21/3 do not belong to the minimal field 𝐹 ⊇ {𝑎 + 𝑏𝑖|𝑎, 𝑏 ∈ ℚ} 

that is closed under taking square roots, 𝑥 ∈ 𝐹 ⇒ √𝑥 ∈ 𝐹. 

𝑒 ∈ {−1,1}𝑛 

1 

1 √2 

45° 

45° 
sin 45° = 1/√2 

cos 45° = 1 √2Τ  

tan 45° = 1 

 

2 2 

60° 60° 

30° 

√3 

1 

sin 30° = 1/2 sin 60° = √3 2Τ  

cos 30° = √3 2Τ  cos 60° = 1/2 

tan 30° = 1/√3 tan 60° = √3 
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Most angles can’t be trisected, it depends on whether cos(𝜃/3) is expressible 

with arithmetics and square roots on ℚ. cos 3𝜃 = 4 cos3(𝜃) − 3 cos(𝜃) 

makes 𝑥 = cos 20° a solution to 4𝑥3 − 3𝑥 − 1/2 = 0. This equation has no 

rational roots that can be factored out to make cos 20° constructible with 

square roots. There can be no general procedure for trisecting an angle. 

Gauss proved that a regular 17-gon can be constructed by showing that: 

16 cos (
2𝜋

17
) = −1 + √17 + √34 − 2√17 + 2√17 + 3√17 −√34 − 2√17 − 2√34 + 2√17 

He also proved which regular 𝑛-gons can be constructed. For cos(2𝜋 𝑛Τ ) to 

be constructible, 𝑛 must be of the form 2𝑘𝑝1𝑝2…𝑝𝑙 with 𝑘, 𝑙 ∈ {0,1, … } and 

each 𝑝𝑗 being a distinct Fermat prime. A Fermat prime is a prime number of 

the form 𝐹𝑚 = 2
2𝑚 + 1. Fermat conjectured that every Fermat number was a 

prime number 𝐹𝑚 ∈ {3, 5, 17, 257, 65537, 4294967297,… }. Seventy years 

after Fermat’s death Euler proved him wrong 𝐹5 = 641 ⋅ 6700417 and so far 

there has not been found any more Fermat primes beyond 𝐹4. Construction of 

a regular 𝐹4-gon was given by J. Hermes in 1894, it took him 10 years and 

200 pages. 

Trigonometry is not only useful for Euclidean 

geometry. Much of early trigonometry was used 

used for astronomy and astrology with planets and 

stars on the celestial sphere. Straight lines in the 

plane corresponds to great circles and triangles are 

made from segments of such circles. With journeys 

over the oceans came the need for navigation that 

required calculations with spherical trigonometry. 

Spherical geometry does not follow Euclid’s fifth postulate, a version of 

which says that any line has one parallel line going through an outside point. 

Geometry on a sphere belongs to elliptic geometry where thera are no parallel 

lines. As a consequence the angle sum of a triangle is not 180° but always 

𝛼 + 𝛽 + 𝛾 > 180°. Geometry is no longer independent of scale. If a triangle 

is scaled down 𝛼 + 𝛽 + 𝛾 → 180° as the area goes to zero. Euclidean 

geometry is regained in the limit approaching the tangential plane. 

Spherical law of cosines: 
cos 𝑎 = cos 𝑏 cos 𝑐 + sin 𝑏 sin 𝑐 cos𝐴  

+ cyclic permutations of a,b,c and A,B,C 

Spherical law of sines: 
sin 𝐴

sin 𝑎
=
sin 𝐵

sin 𝑏
=
sin 𝐶

sin 𝑐
 

Unit sphere 
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In geometry on a hyperbolic surface of constant 

negative curvature there are more than one 

non-intersecting line to a given line through a 

point outside the line. A sphere of radius 𝑅 has 

constant curvature 𝐾 = 1/𝑅2. A pseudosphere 

of radius 𝑅 is a surface with a saddle shape and 

constant curvature 𝐾 = −1/𝑅2. 

The line segments of a hyperbolic triangle are formed by geodetic curves, the 

shortest curve connectiong two points. The segment is unique and can be 

extended indefinitely in both directions. 

There are many similarities between spherical and hyperbolic geometry. For 

spheric/hyperbolic triangles and circles with angles 𝛼, 𝛽,𝛾 and radii 𝑟, drawn 

on spheres/psuedosheres of radius 𝑅:  

 Spherical geometry Hyperbolic geometry 

Angle sum: 𝛼 + 𝛽 + 𝛾 > 𝜋 𝛼 + 𝛽 + 𝛾 < 𝜋 

Triangle area:  𝑅2(𝛼 + 𝛽 + 𝛾 − 𝜋) 𝑅2(𝜋 − 𝛼 − 𝛽 − 𝛾) 

Circle circumference: 2𝜋𝑅 sin(𝑟/𝑅) 2𝜋𝑅 sinh(𝑟/𝑅) 

Trigonometric functions in ordinary geometry are based on the unit circle 

𝑥2 + 𝑦2 = 1. In hyperbolic geometry there is another kind of trigonometric 

functions called hyperbolic functions. They are based on the unit hyperbola 

𝑥2 − 𝑦2 = 1 with cosh2 𝑡 − sinh2 𝑡 = 1. The functions hyperbolic cosine 

and hyperbolic sine are pronounced “kosh” and “sinch”. 

 

 

 

 

 

 

 

 

Fig. 3.10.1  Definition of trigonometric functions, ordinary and hyperbolic. 

 

 

Hyperbolic laws of cosines and sines: 

cosh 𝑎

𝑅
= cosh 𝑏

𝑅
cosh 𝑐

𝑅
− sinh 𝑏

𝑅
sinh 𝑐

𝑅
cos𝐴 

cos 𝐴 = −cos 𝐵 cos 𝐶 + sin𝐵 sin 𝐶 cosh 𝑎
𝑅
 

sin 𝐴 sinh 𝑎

𝑅
Τ = sin 𝐵 sinh 𝑏

𝑅
Τ = sin 𝐶 sinh 𝑐

𝑅
Τ  
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Hyperbolic functions have properties resembling the trigonometric functions: 

sinh(𝑥 + 𝑦) = sinh𝑥 cosh𝑦 + cosh𝑥 sinh𝑦 

cosh(𝑥 + 𝑦) = cosh𝑥 cosh𝑦 + sinh 𝑥 sinh 𝑦. 

tanh(𝑥 + 𝑦) =
sinh(𝑥 + 𝑦)

cosh(𝑥 + 𝑦)
=
tanh𝑥 + tanh𝑦

1 + tanh𝑥 tanh𝑦
 

sinh 𝑥 + sinh𝑦 = 2 sinh
𝑥 + 𝑦

2
cosh

𝑥 − 𝑦

2
 

cosh𝑥 + cosh𝑦 = 2 cosh
𝑥 + 𝑦

2
cosh

𝑥 − 𝑦

2
 

D(sinh 𝑥) = cosh𝑥 

D(cosh𝑥) = sinh𝑥 

D(tanh𝑥) = 1 − tanh2 𝑥 

The inverse trigonometric functions had 

the prefix arc- since their argument was 

an angle defined by an arc. The inverse 

hyperbolic functions have the prefix ar- 

since their angle is defined by an area. 

D(arsinh (𝑥)) = 1 √𝑥2 + 1Τ  

D(arcosh (𝑥)) = 1 √𝑥2 − 1Τ  

D(artanh (𝑥)) = 1 (1 − 𝑥2)Τ  

3.11 Power series 

There must be a reason behind all the similarities between trigonometric laws 

and hyperbolic laws. The hyperbolic laws are easy to prove once you have 

done exercise 3.34 and showed that: 

cosh 𝑥 =
𝑒𝑥 + 𝑒−𝑥

2
sinh 𝑥 =

𝑒𝑥 − 𝑒−𝑥

2
 

Another way to say this is that cosh 𝑥 equals the symmetric part of 𝑒𝑥 and 

sinh 𝑥 equals the anti-symmetric part of 𝑒𝑥. The property of integers and 

functions to be even or odd is called parity. Every function can be written as 

a sum of an even a.k.a. symmetric function and an odd a.k.a. anti-symmetric 

function, 𝑓 = 𝑓𝑆 + 𝑓𝐴. This decomposition is unique since 𝑓𝑆 + 𝑓𝐴 = 𝑔𝑆 + 𝑔𝐴 

implies 𝑓𝑆 − 𝑔𝑆 = 𝑔𝐴 − 𝑓𝐴 which means 𝑓𝑆 − 𝑔𝑆 and 𝑔𝐴 − 𝑓𝐴 must be both 

even and odd, ℎ(𝑥) = ℎ(−𝑥) = −ℎ(−𝑥) ⇒ ℎ(𝑥) = 0 → 𝑔𝑆 = 𝑓𝑆 ∧ 𝑔𝐴 = 𝑓𝐴. 

The trigonometric functions are defined from the circle 𝑥2 + 𝑦2 = 1 whereas 

the hyperbolic functions are defined from the hyperbola 𝑥2 − 𝑦2 = 1. One of 

these can be obtained from the other by a replacement 𝑦 ↷ 𝑖𝑦. Could the 

similar laws be explained by extending the domains of cos 𝑥 , sin 𝑥 and 𝑒𝑥 to 

complex numbers, as we can do for polynomials 𝑃(𝑧) = ∑ 𝑎𝑘𝑧
𝑘𝑛

𝑘=0 ? 
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The way to connect general functions to polynomials is via approximations. 

Assume 𝑓(𝑥) is 𝑛 times differentiable in an open interval containing 𝑥 = 𝑎 

and you want to imitate 𝑓(𝑥) in a neighborhood of 𝑎 with polynomials of 

ever higher degree 𝑃𝑚(𝑥) = ∑ 𝑎𝑘(𝑥 − 𝑎)
𝑘𝑚

𝑘=0  to match the shape of 𝑓(𝑥). 

𝑚 

0: 𝑃0(𝑎) = 𝑓(𝑎) ⇒  𝑃0(𝑥) = 𝑓(𝑎) 

1: 𝑃1(𝑎) = 𝑓(𝑎), 𝑃1
′(𝑎) = 𝑓′(𝑎) ⇒ 𝑃1(𝑥) = 𝑓(𝑎) + 𝑓

′(𝑎)(𝑥 − 𝑎) 

2: 𝑃2
(𝑘)(𝑎) = 𝑓(𝑘)(𝑎), 𝑘 = 0,1,2 ⇒ 𝑃2(𝑥) = 𝑓(𝑎) + 𝑓

′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2
(𝑥 − 𝑎)2 

… … 

𝑛: 𝑃𝑛
(𝑘)(𝑎) = 𝑓(𝑘)(𝑎), 𝑘 = 0,1, … , 𝑛 ⇒        𝑃𝑛(𝑥) = ∑

𝑓(𝑘)(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘

𝑛

𝑘=0

 

 

 

 

 

 

 

Fig. 3.11.1  𝑒sin 𝑥 with Taylor polynomials of degree 0,1,2 and 3 around 𝑥 = 2. 

Theorem. (Taylor’s formula) 

If 𝑓 ∈ C𝑛(𝐼, ℝ) for some open interval 𝐼 containing 𝑎 and 𝑥 then 

𝑓(𝑥) = ∑
𝑓(𝑘)(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘

𝑛−1

𝑘=0

+ 𝑅𝑛(𝑥) 

𝑅𝑛(𝑥) =
𝑓(𝑛)(𝜉)

𝑛!
(𝑥 − 𝑎)𝑛  for some 𝜉 ∈ [𝑎, 𝑥] ∪ [𝑥, 𝑎] 

𝑅𝑛(𝑥) is called Lagrange’s remainder term. 

Another form of 𝑅𝑛(𝑥) is (𝑥 − 𝑎)𝑛𝐴(𝑥) with 𝐴 bounded for closed intervals.  

Formulae with 𝑎 = 0 are named after Maclaurin. Taylor (1685-1731) was 

from England and Maclaurin (1698-1741) was from Scotland. 

𝑓(𝑥) =
𝑓(0)

0!
𝑥0 +

𝑓′(0)

1!
𝑥1 +⋯+

𝑓(𝑛−1)(0)

(𝑛 − 1)!
𝑥𝑛−1 +

𝑓(𝑛)(𝜉)

𝑛!
𝑥𝑛 , 𝜉 ∈ [0, 𝑥]  

Proof. 

Repeated  use of integration by parts (∫ 𝑓 ⋅ 𝑔𝑑𝑥
𝑏

𝑎
= [𝐹 ⋅ 𝑔]𝑎

𝑏 − ∫ 𝐹 ⋅ 𝑔′𝑑𝑥
𝑏

𝑎
) 

𝑓(𝑥) − 𝑓(𝑎) = න 1 ⋅ 𝑓′(𝑡)𝑑𝑡
𝑥

𝑎

= [(𝑡 − 𝑥)𝑓′(𝑡)]𝑎
𝑥 −න (𝑡 − 𝑥)𝑓′′(𝑡)𝑑𝑡

𝑥

𝑎

=
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𝑓(𝑥) − 𝑓(𝑎) = (𝑥 − 𝑎)𝑓′(𝑎) − [
(𝑡 − 𝑥)2

2
𝑓′′(𝑡)]

𝑎

𝑥

+න
(𝑡 − 𝑥)2

2
𝑓′′′(𝑡)𝑑𝑡

𝑥

𝑎

 

= (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥 − 𝑎)2

2
𝑓′′(𝑎) + ⋯+

(𝑥 − 𝑎)𝑛−1

(𝑛 − 1)!
𝑓(𝑛−1)(𝑎) + 𝑅𝑛(𝑥) 

𝑅𝑛(𝑥) = න
(𝑥 − 𝑡)𝑛−1

(𝑛 − 1)!
𝑓(𝑛)(𝑡)𝑑𝑡

𝑥

𝑎

 

The mean value theorem of integral calculus: 

If 𝑓 ∈ C0([𝑎, 𝑏], ℝ)and 𝑔 is integrable with no change of sign in [a, b]then

න 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑓(𝑐)න 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

 for some 𝑐 ∈ [𝑎, 𝑏]

 

𝑅𝑛(𝑥) = 𝑓
(𝑛)(𝜉) න

(𝑥 − 𝑡)𝑛−1

(𝑛 − 1)!
𝑑𝑡

𝑥

𝑎

=
𝑓(𝑛)(𝜉)

𝑛!
(𝑥 − 𝑎)𝑛 for some 𝜉 ∈ [𝑎, 𝑥] ∎ 

𝑅𝑛(𝑥) = 𝑓
(𝑛)(𝜉)(𝑥 − 𝑎)𝑛/𝑛! and 𝑓(𝑛) continuous and bounded in any closed 

interval has given rise to a shorter notation, the big-𝑂 notation that describes 

the limiting behavior of a function. 

If ∃𝑀, 𝑥0 s.t. |𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)| for 𝑥 > 𝑥0: 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → ∞ 

If ∃𝑀, 𝛿 s.t. |𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)| for 0<|𝑥 − 𝑥0|<𝛿: 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → 𝑎 

Apart from truncated Taylor series and asymptotic limits, the big-O notation 

is often used to describe how the number of steps or memory usage in 

algorithms increase with input size. Exponential growth 𝑂(𝑎𝑛) is always 

faster than polynomial growth 𝑂(𝑛𝑏). Any function growing faster than 𝑛𝑐 

for any 𝑐 is superplynomial and any function growing slower than 𝑐𝑛 for any 

𝑐 is subexponential. 

If there is a big-O notation theree should be a little-O notation. There is, same 

definition but with “∃𝑀 > 0” replaced by “∀𝜀 > 0”. 𝑓(𝑥) = 𝑜(𝑔(𝑥)) means 

𝑓(𝑥) grows much slower than 𝑔(𝑥), ∑ 𝑎𝑘𝑥
𝑘𝑛

𝑘=0 = 𝑜(𝑥𝑛+𝜀) for any 𝜀>0. 

D(𝑒𝑥) = 𝑒𝑥 makes it easy to get the Taylor series of 𝑒𝑥 around 𝑥 = 0. 

𝑒𝑥 =∑
𝑥𝑘

𝑘!

𝑛−1

𝑘=0

+ 𝑅𝑛(𝑥) with 𝑅𝑛(𝑥) =
𝑒𝜉

𝑛!
𝑥𝑛 for some ξ ∈ [0, 𝑥] 

lim
𝑛→∞

|𝑅𝑛(𝑥)| ≤ 𝑒
|𝑥| lim

𝑛→∞

|𝑥|𝑛

𝑛!
≤ 𝑒|𝑥| lim

𝑛→∞

|𝑥|𝑛

(𝑛/2)𝑛/2
= 𝑒|𝑥| lim

𝑛→∞
(
𝑥2

𝑛/2
)

𝑛/2

= 0 

 𝑒𝑥 =∑
𝑥𝑘

𝑘!

∞

𝑘=0
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Derivatives and antiderivatives 

𝑓(𝑥) D(𝑓(𝑥)) D𝑛(𝑓(𝑥)) 𝐷−1(𝑓(𝑥)) 

𝑥𝛼 𝛼𝑥𝛼−1 𝛼𝑛𝑥𝛼−𝑛 𝛼−1𝑥𝛼+1 

ln 𝑥 1/𝑥 (−1)𝑛−1(𝑛 − 1)!/𝑥𝑛 𝑥 ln 𝑥 − 𝑥 

𝑒𝑥 𝑒𝑥 𝑒𝑥 𝑒𝑥 

sin 𝑥 cos 𝑥 + −Τ cos 𝑥    sin 𝑥Τ  −cos𝑥 

cos 𝑥 −sin 𝑥 + −Τ cos 𝑥    sin 𝑥Τ  sin 𝑥 

tan 𝑥 1 cos2 𝑥Τ  𝑃𝑛+1(tan 𝑥) − ln|cos 𝑥| 

arcsin 𝑥 (1 − 𝑥2)−1 2Τ  … 𝑥 arcsin 𝑥 + √1 − 𝑥2 

arccos 𝑥 −(1 − 𝑥2)−1 2Τ  … 𝑥 arccos 𝑥 − √1 − 𝑥2 

arctan 𝑥 (1 + 𝑥2)−1 … 𝑥 arctan 𝑥 − ln√𝑥2 + 1 

sinh 𝑥 cosh 𝑥 sinh 𝑥         cosh 𝑥Τ  cosh 𝑥 

cosh 𝑥 sinh 𝑥 cosh 𝑥         sinh 𝑥Τ  sinh 𝑥 

tanh 𝑥 1 cosh2 𝑥Τ  𝑃𝑛+1(tanh 𝑥) ln cosh 𝑥 

arsinh 𝑥 (𝑥2 + 1)−1 2Τ  … 𝑥 arsinh 𝑥 − √𝑥2 + 1 

arcosh 𝑥 (𝑥2 − 1)−1 2Τ  … 𝑥 arcosh𝑥 − √𝑥2 − 1 

artanh 𝑥 (1 − 𝑥2)−1 … 𝑥 artanh 𝑥 + ln√1 − 𝑥2 

 

Power series expansions 

𝑓(𝑥) =∑ 𝑓(𝑘)(0)𝑥𝑘/𝑘!
𝑛−1

𝑘=0
+ 𝑅𝑛(𝑥) 

Interval where 
lim
𝑛→∞

𝑅𝑛(𝑥) = 0 

(𝑥 + 1)𝛼 = (
𝛼
0
) + (

𝛼
1
) 𝑥 + (

𝛼
2
) 𝑥2 +⋯+ (

𝛼
𝑛
)𝑥𝑛 + 𝑅𝑛+1(𝑥) 

𝛼>0:𝑥 ∈ [−1,1] 

𝛼<0:𝑥 ∈ (−1,1) 

 

ln(𝑥 + 1) = 𝑥 −
𝑥2

2
+
𝑥3

3
− ⋯+ (−1)𝑛−1

𝑥𝑛

𝑛
+ 𝑅𝑛+1(𝑥) 𝑥 ∈ (−1,1] 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯+

𝑥𝑛

𝑛!
+ 𝑅𝑛+1(𝑥) |𝑥| < ∞ 

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
+ ⋯+ (−1)𝑛

𝑥2𝑛+1

(2𝑛 + 1)!
+ 𝑅2𝑛+3(𝑥) |𝑥| < ∞ 

cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
+ ⋯+ (−1)𝑛

𝑥2𝑛

(2𝑛)!
+ 𝑅2𝑛+2(𝑥) |𝑥| < ∞ 

sinh 𝑥 =  𝑥 +
𝑥3

3!
+
𝑥5

5!
+ ⋯+

𝑥2𝑛+1

(2𝑛 + 1)!
+ 𝑅2𝑛+3(𝑥) |𝑥| < ∞ 

cosh 𝑥 = 1 +
𝑥2

2!
+
𝑥4

4!
+ ⋯+

𝑥2𝑛

(2𝑛)!
+ 𝑅2𝑛+2(𝑥) |𝑥| < ∞ 

n.b. (
𝛼
𝑘
) ≡

𝛼(𝛼−1)⋅…⋅(𝛼−𝑘+1)

𝑘!
 (𝛼 ∈ ℝ) and eq. 1 →

1

1−𝑥
= 1 + 𝑥 + 𝑥2 +⋯ 
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Example. (𝑒 is not rational) 

𝑥 = 1 → 𝑒 = 1 +
1

1!
+
1

2!
+ ⋯+

1

(𝑛 − 1)!
+ 𝑅𝑛(1) 

𝑟 = 𝑅𝑛(1) = 𝑒
ξ/𝑛!  and 0 ≤ ξ ≤ 1 → 0 < 𝑟 < 3/𝑛! 

Assume 𝑒 = 𝑝/𝑞 and let 𝑛 − 1 ≥ 𝑞. Multiply both sides with (𝑛 − 1)!. 

𝑟(𝑛 − 1)! must be integer but 0 < 𝑟(𝑛 − 1)! < 3/𝑛 for all 𝑛 ⇒ 𝑒 ∉ ℚ.  ∎ 

Taylor’s theorem is very useful for studying extrema and limits of functions. 

When an expression is built from several functions it is often a good idea to 

replace them with truncated Taylor series’ and big O-notations for remaining 

terms. Complicated expressions with several O-terms can be simplified more 

radically than expressions with ordinary terms as long as the rules of O-

notation are followed. An expression containing an O-term represents a set of 

functions with certain limiting behavior near a point or at infinity. An 

equation between two such expressions 𝐴 = 𝐵 really means 𝐴 ⊆ 𝐵 and if you 

can prove something for functions in 𝐵 this will apply to all functions in 𝐴 as 

well. For instance (𝑛 + O(𝑛1/2))(𝑛 + O(log 𝑛))2 = 𝑛3 + O(𝑛5/2) as 𝑛 → ∞. 

From Taylor’s formula and the remainder term 𝑓𝑛(𝜉)(𝑥 − 𝑥0)
𝑛/𝑛! follows: 

Theorem. 

If 𝑓 ∈ C𝑛(𝐼, ℝ) in a neighborhood 𝐼 of 𝑥0 and 

𝑓′(𝑥0) = 𝑓
′′(𝑥0) = ⋯ = 𝑓𝑛−1(𝑥0) = 0 while 𝑓𝑛(𝑥0) ≠ 0 Then 

𝑛 even and 𝑓𝑛(𝑥0) < 0 ⇒ 𝑓 has a local strict maximum in 𝑥0. 

𝑛 even and 𝑓𝑛(𝑥0) > 0 ⇒ 𝑓 has a local strict minimum in 𝑥0. 

𝑛 odd ⇒ 𝑓 has neither a local maximum or minimum in 𝑥0. 

Even functions have no 𝑥2𝑘+1-terms in their Taylor expansions around 𝑥0=0 

and odd functions have no 𝑥2𝑘-terms. 

A smooth function 𝑓 ∈ C∞(𝐷) on an open set with 𝑥0 ∈ 𝐷 ⊆ ℝ is equal to its 

Taylor series 𝑓(𝑥) = ∑ 𝑓𝑘(𝑎)(𝑥 − 𝑥0)
𝑘/𝑘!∞

𝑘=0  whenever lim
𝑛→∞

𝑅𝑛(𝑥)=0. 

Any function that can be represented by a convergent power series for every 

𝑥 in a neighborhood of every 𝑥0 ∈ 𝐷 is said to be analytic in 𝐷, 𝑓 ∈ C𝜔(𝐷). 

The coefficients 𝑎𝑘 of a function analytic in 𝑥0 (i.e. in a neighborhood of 𝑥0) 

𝑓 = ∑ 𝑎𝑘(𝑥 − 𝑥0)
𝑘∞

𝑘=0  are uniquely determined by 𝑓, 𝑎𝑘 = 𝑓
𝑘(𝑥0)/𝑘!.  

 
𝑓 ∈ C∞(𝐷) ⇏  𝑓 ∈ C𝜔(𝐷) 

𝑓(𝑥) = {   𝑒
−1/𝑥2  if 𝑥 ≠ 0

      0        if 𝑥 = 0
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Smooth does not imply analytic since 𝑓(𝑥) = [𝑥 ≠ 0] ⋅ 𝑒−1/𝑥
2
∈ C∞(ℝ) but 

𝑓𝑘(0) = 0 means for 𝑓 to be analytic at 𝑥 = 0,  𝑓(𝑥) = ∑ 0 ⋅ 𝑥𝑘∞
𝑘=0 ≡ 0 in a 

neighborhood of 0 which is not true for 𝑓 so 𝑓 ∉ C𝜔(ℝ) and more generally 

C0 ⊂ C1 ⊂ C2 ⊂ ⋯ ⊂ C∞ ⊂ C𝜔. The letter 𝜔 is used since it is also the first 

infinite ordinal 1,2,3, … , 𝜔, 𝜔 + 1,…. The definition of being analytic can be 

carried over word for word to the world of complex functions 𝑓: ℂ → ℂ. 

Complex numbers is a much more natural arena for convergent power series. 

It gives rise to a deep and rich area of mathematics called complex analysis. 

A function 𝑓: ℂ → ℂ that is complex differentiable in a neighborhood will 

automatically be infinitely differentiable and equal to its own Taylor series in 

that neighborhood. 

This is a world that we will only take a small glimpse of here by looking at 

the exponential and trigonometric functions. 

𝑒𝑧 =∑
𝑧𝑘

𝑘!

∞

𝑘=0

cos 𝑧 = ∑
(−1)𝑘𝑧2𝑘

(2𝑘)!

∞

𝑘=0

sin 𝑧 =∑
(−1)𝑘𝑧2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

↓ 

𝑒𝑖𝑧 = cos 𝑧 + 𝑖 sin 𝑧 

The functions will be well-defined and the identity will be valid whenever the 

series’ are convergent. Convergence of a series ∑ 𝑎𝑘
∞
𝑘=1 , with 𝑎𝑘 ∈ ℝ or ℂ 

can be tested by comparing to the geometric series ∑ 𝛼𝑘∞
𝑘=0  that converges 

whenever |𝛼| = |𝑎𝑘+1/𝑎𝑘| < 1. 

Theorem. (Ratio test) 

Let ∑ 𝑐𝑘
∞
𝑘=0  be a complex series and 𝐿 = lim

𝑛→∞
|𝑐𝑘+1/𝑐𝑘|: 

If 𝐿 < 1 then the series converges absolutely ∑ |𝑐𝑘|
∞
𝑘=0  has a limit. 

If 𝐿 > 1 then the series is divergent. 

If 𝐿 = 1 or the limit does not exist then the test is inconclusive. 

For an absolutely convergent series the sum 𝑆 = ∑ 𝑐𝑘
∞
𝑘=0  exists and is 

independent of summation order. 

Proof. 

If 𝐿 = lim
𝑘→∞

|𝑐𝑘+1/𝑐𝑘| < 1  let 𝑟 = (𝐿 + 1)/2  , 𝐿 < 𝑟 < 1 

∃𝑁: |𝑐𝑛+𝑘  | < 𝑟
𝑘|𝑐𝑛| for every 𝑛 > 𝑁 and 𝑘 > 0 ⇒ 

∑ |𝑐𝑘|
∞
𝑘=𝑁+1 = ∑ |𝑐𝑁+𝑘|

∞
𝑘=1 < ∑ 𝑟𝑘|𝑐𝑁|

∞
𝑘=1 < |𝑐𝑁|

𝑟

1−𝑟
< ∞ ⇒ ∑ |𝑐𝑘|

∞
𝑘=1 <∞ 

If 𝐿 > 1 then |𝑐𝑘+1| > |𝑐𝑘| for big enough 𝑘 will guarantee divergence. 
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Absolute convergence ∑ | 𝑎𝑘 + 𝑖𝑏𝑘⏟    
𝑐𝑘

|∞
𝑘=1 < ∞  ⟹ Convergence ∑ 𝑐𝑘

∞
𝑘=1  

∑|𝑐𝑘| < ∞ ⇒ ∑√𝑎𝑘
2 + 𝑏𝑘

2 < ∞ ⇒ ∑|𝑎𝑘| < ∞ ∧ ∑|𝑏𝑘| < ∞ 

0 ≤ 𝑎𝑘 + |𝑎𝑘| ≤ 2|𝑎𝑘| → 𝑆̂𝑛 = ∑ (𝑎𝑘 + |𝑎𝑘|)
𝑛
𝑘=1  and 𝑆̂̂𝑛 = ∑|𝑎𝑘| are both 

increasing and bounded → their limit exists → ∑ 𝑎𝑘
∞
𝑘=1 = 𝑆̂ − 𝑆̂̂. The same 

goes for ∑ 𝑏𝑘
∞
𝑘=1 . Independence of summation order is left as an exercise. 

The ratio test for 𝑒𝑧 , cos 𝑧 and sin 𝑧 gives 𝐿 = 0 and three well-defined 

functions, analytic in all of ℂ. 

𝑒𝑧 ⋅ 𝑒𝑤 = 𝑒𝑧+𝑤 (Exercise. 3.15) 

𝑒𝑧 = 𝑒𝑧 

𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

From these properties follows all the symmetries 

and identities of the trigonometric functions.  

 

 

 

 

 𝑒𝑧+𝑤 = 𝑒𝑧 ⋅ 𝑒𝑤 → 

cos(𝛼 + 𝛽) = 𝑅𝑒(𝑒𝑖(𝛼+𝛽)) = 𝑅𝑒(𝑒𝑖𝛼 ⋅ 𝑒𝑖𝛽) = cos𝛼 cos𝛽 − sin 𝛼 sin 𝛽

sin(𝛼 + 𝛽) = 𝐼𝑚(𝑒𝑖(𝛼+𝛽)) = 𝐼𝑚(𝑒𝑖𝛼 ⋅ 𝑒𝑖𝛽) = cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽
 

 

𝑒𝑛𝑧 = (𝑒𝑧)𝑛 → 

cos 𝑛𝛼 = 𝑅𝑒(𝑒𝑖⋅𝑛𝛼) = 𝑅𝑒(cos 𝛼 + 𝑖 sin 𝛼)𝑛 = ∑ (
𝑛
𝑘
) (−1)

𝑘
2 sin𝑘 𝛼 cos𝑛−𝑘 𝛼

𝑘≤𝑛

𝑘∈2ℕ0

sin 𝑛𝛼 = 𝐼𝑚(𝑒𝑖⋅𝑛𝛼) = 𝐼𝑚(cos𝛼 + 𝑖 sin 𝛼)𝑛 = ∑ (
𝑛
𝑘
) (−1)

𝑘−1
2 sin𝑘 𝛼 cos𝑛−𝑘 𝛼

𝑘≤𝑛

𝑘∈2ℕ0+1

 

cosh 𝑧 = (𝑒𝑧 + 𝑒−𝑧)/2 → cosh 𝑖𝑧 = cos 𝑧 → cosh 𝑧 = cos 𝑖𝑧 

sinh 𝑧 = (𝑒𝑧 − 𝑒−𝑧)/2 → sinh 𝑖𝑧 = 𝑖 sin 𝑧 → sinh 𝑧 = −𝑖 sin 𝑖𝑧 

This explains the similarities between hyperbolic and trigonometric laws. 

cos2 𝑧 + sin2 𝑧 = (cos 𝑧 + 𝑖 sin 𝑧)(cos 𝑧 − 𝑖 sin 𝑧) = 𝑒𝑧 ⋅ 𝑒−𝑧 = 𝑒0 = 1 

cosh2 𝑧 − sinh2 𝑧 = (cos 𝑖𝑧 − 𝑖 sin 𝑖𝑧)(cos 𝑖𝑧 + 𝑖 sin 𝑖𝑧) = 1 

Can we define 𝑧𝑤 as (𝑒ln 𝑧)
𝑤

? Not really, 𝑓(𝑧) = 𝑒𝑧 is not injective. 

𝑓(𝑧 + 2𝜋𝑖) = 𝑓(𝑧) makes ln 𝑧 multivalued ln(𝑟𝑒𝑖𝜃) = ln 𝑟 + 𝑖(𝜃 + 𝑛 ⋅ 2𝜋).

𝑧 = 𝑎 + 𝑏𝑖 = 𝑟𝑒𝑖𝜃 

𝑟 = |𝑧| = √𝑎2 + 𝑏2 

𝜃 = atan2(𝑏, 𝑎) 

  Function resembling 

  arctan(b/a) that can 

  handle all signs of a, b

  

𝑟 

𝜃 
𝑟 cos𝜃 

𝑟 sin𝜃 

𝑧 

ℜ𝑒(𝑧) 

ℑ𝔪(𝑧) 

−1 1 

𝜋 

𝑒𝜋𝑖 = −1 

𝑒𝜋𝑖 + 1 = 0 

Beautiful formulas connecting 

analysis (𝑒), geometry (𝜋) and 

algebra (𝑖) with elementary 

numbers (−1,0,1). 
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Big numbers part 3 

In the previous part of big numbers from page 91 we saw the Conway 

chained arrow notation 𝑘1 → 𝑘2 → ⋯ → 𝑘𝑛. Its recursive definition had 

an enormous power to generate incredibly huge numbers. In order to 

generate numbers that are bigger than what we can practically express 

with horizontal arrows and hierarchical towers of indices counting arrows 

 9 →3 9 ≡ 9 → 9 → 9 9 →(9→(9→9)9) 9 

we will need new and even more powerful ideas. 

These new ideas are a combination of: 

• Recursion 

• A sequence of functions of ever faster growth 

• Diagonalization 

Diagonalization is the method we saw in Cantors proof from page 101, 

where real numbers were shown to be uncountable. Any sequence has a 

first element and every recursion has a base case. 

The first step should be as simple as possible and the simplest growing 

function is the successor function 𝑓0(𝑛) = 𝑛 + 1. The next step in growth 

after counting is addition which can be defined recursively in terms of 

successorship. All arithmetic operations can be defined by recursion and 

the successor function. An axiomatic treatment of this was given by 

Giuseppe Peano in 1889. It is called Peano arithmetic. 

𝑓1(𝑚, 𝑛) = 𝑚 + 𝑛 𝑚+ 0 = 0 𝑚 + 𝑓0(𝑛) = 𝑓0(𝑚 + 𝑛) 

𝑓2(𝑚, 𝑛) = 𝑚 ⋅ 𝑛 𝑚 ⋅ 0 = 0 𝑚 ⋅ 𝑓0(𝑛) = 𝑚 +𝑚 ⋅ 𝑛 

𝑓3(𝑎, 𝑛) = 𝑎
𝑛 𝑎0 = 1 𝑎𝑓0(𝑛) = 𝑎 ⋅ 𝑎𝑛 

𝑓4(𝑎, 𝑛) = 𝑎 ↑↑ 𝑛 𝑎 ↑↑ 0 = 1 𝑎 ↑↑ 𝑓0(𝑛) = 𝑎
𝑎↑↑𝑛 

… … … 

𝑓𝑝+2(𝑎, 𝑛) = 𝑎 ↑
𝑝 𝑛 𝑎 ↑𝑝 0 = 1 𝑎 ↑𝑝 𝑓0(𝑛) = 𝑎 ↑

𝑝−1 (𝑎 ↑𝑝 𝑛) 

 

For 𝑘 = 3 and onwards: 𝑓𝑘(𝑎, 0) = 1,  𝑓𝑘(𝑎, 𝑛 + 1) = 𝑓𝑘−1(𝑎, 𝑓𝑘(𝑎, 𝑛)) 

A few small modifications give the following sequence of functions: 

𝑓0(𝑛) = 𝑛 + 1

𝑓𝛼(𝑛) = 𝑓𝛼−1
𝑛 (𝑛)
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To move on with a function that grows faster than 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, … 

requires a new idea, diagonalization. 

  

  

  

  

  

  

The symbol 𝜔 is the same as in C𝜔 for real analytic functions. It captures 

an essence of infinity by having a property 𝑃(𝑛) for every 𝑛 ∈ {0,1,2, … }. 

𝑓𝜔(𝑥) will outgrow 𝑓𝑛(𝑥) as soon as 𝑥 > 𝑛. Once 𝑓𝜔 is defined the road is 

open to define 𝑓𝜔+1(𝑛) ≡ 𝑓𝜔
𝑛(𝑛). 

Numbers like 𝜔 and 𝜔 + 1 belong to a class of numbers called ordinal 

numbers. They start at 0, form an ever increasing sequence and have their 

own arithmetic: 0,1,2, … , 𝜔, 𝜔 + 1,𝜔 + 2,… , 𝜔 + 𝜔 = 𝜔 ⋅ 2, 𝜔2 + 1,…. 

Ordinal numbers are closely linked to well-ordered sets, sets that have 

a total order (p. 94) where every non-empty subset has a least element in 

this ordering. Roughly speaking an ordinal number is an equivalence class 

of well-ordered sets (𝑆, <) under order preserving bijections: 

(𝐴, <𝐴) ≅ (𝐵,<𝐴) ↔ ∃𝑓: 𝐴 → 𝐵 s. t 𝑓 bijective, 𝑥 <𝐴 𝑦 ⇒ 𝑓(𝑥) <𝐵 𝑓(𝑦) 

0 represents ∅ and 𝜔 represents (ℕ0, <) ↔ (0 < 1 < 2 < ⋯ ). 

If 𝛼<𝛽 among ordinals then representations can be chosen so that 𝛼 ⊂ 𝛽. 

0=∅  1={0}  2={0,1}  3={0,1,2}  𝜔={0,1,2, … }  𝜔 + 1={0,1,2, … ,0′}  

If the set corresponding to a non-zero ordinal has no maximal element it 

is a limit ordinal, if not then it is a successor ordinal. Limit ordinals can 

be written as 𝛼 = lim𝑛𝛼𝑛  of increasing ordinals with 𝛼𝑛 < 𝛼.  

𝑓0(𝑛) = 𝑛 + 1 Succcesor 

𝑓1(𝑛) = 𝑓0
𝑛(𝑛) = 𝑛 + 𝑛 = 2 ⋅ 𝑛 Doubling 

𝑓2(𝑛) = 𝑓1
𝑛(𝑛) = 2𝑛 ⋅ 𝑛 > 2𝑛 

𝑓3(𝑛) = 𝑓2
𝑛(𝑛) = ⋯22

2𝑛𝑛⋅2𝑛𝑛 ⋅ 22
𝑛𝑛 ⋅ 2𝑛𝑛 > 2 ↑↑ 𝑛 

… ⋯ 

𝑓𝛼(𝑛) = 𝑓𝛼−1
𝑛 (𝑛) > 2 ↑𝛼−1 𝑛 

𝑓0(0) 𝑓0(1) 𝑓0(2) 𝑓0(3) 𝑓0(4) 

𝑓1(0) 𝑓1(1) 𝑓1(2) 𝑓1(3) 𝑓1(4) 

𝑓2(0) 𝑓2(1) 𝑓2(2) 𝑓2(3) 𝑓2(4) 

𝑓3(0) 𝑓3(1) 𝑓3(2) 𝑓3(3) 𝑓3(4) 

𝑓4(0) 𝑓4(1) 𝑓4(2) 𝑓4(3) 𝑓4(4) 

𝑓𝜔(𝑛) ≡ 𝑓𝑛(𝑛) 
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Ordinal numbers have their own arithmetic, they can be added, multiplied 

and exponentiated: 

𝛼𝑆 + 𝛼𝑇  corresponds to 𝑆 ⊔ 𝑇 (disjoint union) with an order operation 

that keeps old orders and where (𝑥, 𝑦) ∈ 𝑆 × 𝑇 ⇒ 𝑥 < 𝑦. 

1 + 𝜔 ↔ {0′, 0,1, … }, 0′ < 0 is isomorphic to (ℕ0, <), (
0′ ↷ 0
𝑛 ↷ 𝑛 + 1

) but 

𝜔 + 1 ↔ {0,1,2, … ,0′}, 0′ > 𝑛 for ∀𝑛 ∈ ℕ0 is not isomorphic to (ℕ0, <) 

1 + 𝜔 = 𝜔 ≠ 𝜔 + 1. 

𝛼𝑆 ⋅ 𝛼𝑇 corresponds to 𝑆 × 𝑇 with lexicographical ordering of pairs 

(𝑥𝑖 , 𝑦𝑗) with reversed order of significance in the indices. 

𝜔2:(0,0) < (1,0) < (2,0) < ⋯ < (0,1) < (1,1) < (2,1) < ⋯ ↔  𝜔 + 𝜔 

2𝜔:(0,0) < (1,0) < (0,1) < (1,1) < (0,2) < (1,2) < ⋯ ↔ 𝜔 ≠ 𝜔2 

𝛼𝑆
𝛼𝑇 corresponds to the set of functions from 𝑇 to 𝑆 with similar ordering 

as above. For our purposes we can define it inductively 𝛼0 ≡ 1 and 

if the exponent is a successor ordinal 𝛼𝛽+1 ≡ 𝛼𝛽 ⋅ 𝛼 and if the exponent 

is a limit ordinal 𝛼𝛽 ≡ lim
𝛿<𝛽

𝛼𝛿. 

𝜔 + 1,𝜔 + 2,… ⇢ lim
𝑛
(𝜔 + 𝑛) = 𝜔2 ⇢ lim

𝑛
𝜔𝑛 = 𝜔2 ⇢ lim

𝑛
𝜔𝑛 = 𝜔𝜔  

⇢ 𝜔𝜔 + 1 ⇢ 𝜔𝜔 + 𝜔 ⇢ 𝜔𝜔 ⋅ 2 ⇢ 𝜔𝜔 ⋅ 𝜔 = 𝜔𝜔+1 ⇢ 𝜔(𝜔
𝜔) ⇢ 

lim
𝑛
𝜔 ↑↑ 𝑛 = 𝜔𝜔

𝜔⋰

= 𝜀0 ⇢ 𝜀0 + 1 ⇢ ⋯ A never ending story. 

If 𝛼 is a limit ordinal 𝛼 = lim
𝑛
𝛼𝑛 then 𝑓𝛼(𝑛) ≡ 𝑓𝛼𝑛(𝑛) will outgrow 𝑓𝛼𝑛 

when the input reaches 𝑛. To avoid big numbers in our notation we can 

use 𝛼+1 instead of 𝛼, 𝑓𝛼+1(𝑛) ≡ 𝑓𝛼
𝑛(𝑛). Metzler’s videos on YouTube 

part 4-8 show how these recursively chained functions expands into 

mind-blowingly large numbers. 

𝑓𝜔(𝑛) > 2 ↑
𝑛−1 𝑛 

𝑓𝜔+1(𝑛) > 2 → 𝑛 → 𝑛 − 1 → 2 

𝑓𝜔2+𝑘(𝑛) > 𝑛 → 𝑛 → 𝑛 → 𝑘 

𝑓𝜔2(𝑛) > 𝑛 → 𝑛 → ⋯ → 𝑛 → 𝑛 

⋮ ( chain with 𝑛 arrows ) 

A sequence of ordinal indexed 

functions with increasing growth 

is called a fast-growing hierarchy. 
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Alternating between diagonalizing 

for limit ordinals and downsizing 

with successor ordinals at: 

𝛼0 = 𝜔
22 + 𝜔2 + 2 

𝛼−1 = 𝜔
22 + 𝜔 + 2 

𝛼−2 = 𝜔
22 + 2 

𝛼−3 = 𝜔
2 +𝜔2 + 2 

𝛼−4 = 𝜔
2 +𝜔 + 2 

𝛼−5 = 𝜔
2 + 2 

 

 

Even with 𝑓𝜔2  we have still not reached the Conway notation if we allow 

towers of arrow-counting. To go beyond this let’s look at an example: 

𝑓𝜔4(7) = 𝑓lim𝑛𝜔3𝑛(7) = 𝑓𝜔37(7) = 𝑓𝜔36+𝜔3(7) = 𝑓𝜔36+𝜔27(7) = ⋯ 

= 𝑓𝜔36+𝜔26+𝜔6+7(7) = 𝑓𝜔36+𝜔26+𝜔6+6
7 (7). 

This descent in limit ordinals until a successor ordinal is reached looks 

much like how numbers are written in a positional system with base 𝜔. 

Every ordinal can be written in a unique way in Cantor normal form: 

𝛼 = 𝜔𝛽1𝑐1 +𝜔
𝛽2𝑐2 +⋯+ 𝜔

𝛽𝑘𝑐𝑘 with 𝑘, 𝑐1, 𝑐2, … , 𝑐𝑘 ∈ ℤ
+ and 

 ordinals 𝛽1 > 𝛽2 > ⋯ > 𝛽𝑘 ≥ 0 

𝛽1 is called the degree of 𝛼 with 𝛽1 ≤ 𝛼. The base can be any ordinal 𝛿>1 

(finite, successor or limit ordinal) and 𝑐𝑖 will be positive ordinals smaller 

than 𝛿. 𝜀0 is a unique ordinal, the first ordinal with degree not less than 

itself, 𝜀0 = 𝜔
𝜀0 → deg(𝜀0) = 𝜀0. 

𝑓𝜔𝜔(3) = 𝑓𝜔3(3) = 𝑓𝜔23(3) = 𝑓𝜔22+𝜔2(3) = 𝑓𝜔22+𝜔3(3) = 𝑓𝜔22+𝜔2+3(3) = 

𝑓𝛼0
2 𝑓𝛼0−1

2 𝑓𝛼0−2
2 𝑓𝛼−1

2 𝑓𝛼−1−1
2 𝑓𝛼−1−2

2 …𝑓𝛼−5
2 𝑓𝛼−5−1

2 𝑓𝛼−5−2
3 (3) 

𝑓𝛼−5−2
3 (3) = 𝑓𝜔2

2 (𝑓𝜔2(3)) = 

𝑓𝜔2
2 (3 →3 3) = 

𝑓𝜔2( (3 →
3 3) →(3→

33) (3 →3 3) ) = 𝑀 

𝑀 is a Conway tower with 4 levels. 

𝑓𝛼−5−1
2 (𝑀) = 𝑓𝜔2+1(𝑓𝜔2

𝑀 (𝑀)) 

Way beyond a Conway tower of 𝑀 levels 

and that is just the beginning of a long 

chain of functions to unpack, and then 

there are ever larger numbers like 𝑓𝜀𝜀0(3). 

Ordinal numbers are important for proof theory and the fundamentals of 

mathematics. As an appetizer for things to come, some properties of 𝜀0, a 

number with deep links to Peano arithmetic that is based on recursion and 

proof by induction. Gödel proved that any mathematical system strong 

enough to contain Peano arithmetic has true statements that are not 

provable within the system. Diagonalization is essential in the proof of 

Gödel’s incompleteness theorem. No proof within Peano arithmetic can 

show that an algorithm to compute 𝑓𝜀0  will ever stop. Slower functions 

like 𝑓𝜔↑↑100 can be handled. Are there any “natural” problem where a 

function with a growth rate like 𝑓𝜀0  occurs? Yes, there is. 
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3.12 Differential equations 

Equations containing functions are different from equations of variables. If 

𝑥2 + 𝑦2 = 𝑟2 is viewed an equation of variables (𝑥, 𝑦) ∈ ℝ2 and a constant 

𝑟 ∈ ℝ then the solutions form a circle of radius 𝑟. Functions have domains 

and any solution 𝑓 ∈ ℱ(𝐷𝑓 ⊆ ℝ , ℝ) to the corresponding functional equation 

𝑥2 + 𝑓(𝑥)2 = 𝑟2 must have 𝐷𝑓 ⊆ [−𝑟, 𝑟] but every restriction of the domain 

will give another function 𝑓|𝐴⊂𝐷𝑓that is also a solution. 

Functions are by definition single-valued but 

nothing prevents us from freely constructing 𝑓 

out of parts from both the upper and lower 

semi-circle. Any partition of 𝐷𝑓 = 𝐴 ∪ 𝐵 with 

𝐴: 𝑓(𝑥) = √𝑟2 − 𝑥2 and 𝐵: 𝑓(𝑥) = −√𝑟2 − 𝑥2 

will do if continuity is not a requirement. 

Differential equations are functional equations that contain a derivative of a 

function that is supposed to solve the equation. Since the derivative at a point 

requires a neighborhood the domain of a solution is assumed to be open. To 

avoid piecewise constructed solutions in domains of disconnected open 

pieces it is assumed that the domain is an open interval 𝐼 of maximal extent. 

𝑦′ = 1/𝑥 splits into two separate problems, one for 𝐼 = (0,∞) and one for 

𝐼 = (−∞, 0). Both intervals are solved by 𝑦 = ln|𝑥| + 𝐶. In a more general 

setting the domain of the solution should be a non-empty connected open set 

of maximal extent. The term “domain” is also used in a set-context to specify 

this kind of set in any space where openness and connectivity applies. 

Definition. 

Domain is a non-empty connected set in a topological space. 

Differential equations are divided into ordinary (ODE) when there is one 

variable 𝑢(𝑥) and partial (PDE) when there are more than one 𝑢(𝑥1, … , 𝑥𝑛). 

PDEs have equations containing partial derivatives 𝜕|𝛼|𝑢 𝜕𝑥𝛼Τ  and ODEs 

have ordinary derivatives 𝑑𝑛𝑢 𝑑𝑥𝑛Τ . The domain of 𝑢 for an ODE will be an 

interval 𝐼 = (𝑎, 𝑏) with 𝑎 < 𝑏 and 𝑎, 𝑏 ∈ ℝ ∪ (−∞,∞) and the domain of 𝑢 

for a PDE will be a set Ω that is a domain of ℝ𝑛. 

⋅ 
 

⋅ 
 
⋅ 

 

⋅ 
⋅ 𝑥 

𝑦 

𝑓(𝑥) 

ODE, 𝑢(𝑥) 

𝑥 ∈ 𝐼 = (𝑎, 𝑏) 

PDE, 𝑢(𝒙) 

Ω 
 𝒙 ∈ Ω = Ω

0 

Ω is connected 
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Differential equations 

Ordinary differential equations (ODE) 

𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0 

Function (𝑦) has one independent variable (𝑥). 

Order of the equation is 𝑛. 

Linear  

𝑎𝑛(𝑥)𝑦
(𝑛) +⋯+ 𝑎1(𝑥)𝑦

′(𝑥) + 𝑎0(𝑥)𝑦(𝑥) + 𝑟(𝑥) = 0 

𝑎𝑖(𝑥) and 𝑟(𝑥) are continuous in 𝑥. 𝑟(𝑥) is the source term. 

Homogeneous, if 𝑟(𝑥) = 0.  

Nonhomogeneous, if 𝑟(𝑥) ≠ 0. 

Nonlinear 𝐹 cannot be written in linear form as above. 

Autonomous 

𝐹 has no dependence on 𝑥, 𝑭(𝒚, 𝒚′, … , 𝒚(𝑛)) = 0 for a system of ODEs. 

Explicit form, equation is in form of 𝑦(𝑛) = 𝐺(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛−1)). 

Implicit form, equation is not given in explicit form. 

System of ODEs 

𝑭(𝑥, 𝒚, 𝒚′, … , 𝒚(𝑛)) = 0 

System of coupled equations with 𝑭 and 𝒚(𝑘) vector valued functions. 

In explicit form: 𝑦𝑖
(𝑛)
= 𝐹𝑖(𝑥, 𝒚, 𝒚

′, … , 𝒚(𝑛)) , 𝑖 = 1,… ,𝑚 

An ODE of order >1 is usually rewritten as a system of ODE of order = 1.  

Partial differential equations (PDE) 

𝐹(𝑥𝑖 , 𝑢, 𝜕
|𝛼|𝑢 𝜕𝑥𝛼Τ ) = 0 

Function 𝑢(𝑥1, … , 𝑥𝑛) has 𝑛 > 1 variables. 

Order of equation is the largest |𝛼| among the arguments of 𝐹. 

Linear PDEs of 2nd order of two variables 𝑥 and 𝑦: 

𝐴𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 + 𝐺 = 0 

where 𝐴,… , 𝐺 may depend on 𝑥 and 𝑦. In regions where the discriminant: 

𝐵2 − 4𝐴𝐶 < 0, the equation is elliptic. 

𝐵2 − 4𝐴𝐶 = 0, the equation is parabolic. 

𝐵2 − 4𝐴𝐶 > 0, the equation is hyperbolic. 

Linear 

An equation with differential operator form 𝐿[𝑢] = 𝑓 where 

the differential operator 𝐿 is linear in 𝑢 and all its derivatives. 

When 𝑓 = 0 it is homogeneous and solutions form a vector space. 

Nonlinear 

A differential equation that is not linear. 
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Differential equations are very common in applications to model reality, 

especially in physics. Ordinary differential equations often used to describe 

time dependence in a system. Dot notation is common for time derivatives, 

displacement 𝒔(𝑡) → velocity 𝒗(𝑡)=𝒔̇(𝑡) → acceleration 𝒂(𝑡)=𝒗̇(𝑡)=𝒔̈(𝑡). 

Newtonian mechanics 

Particle in a force field 

 𝑚𝒓̈(𝑡) = 𝑭(𝒓, 𝑡) 

Electronics 

RLC-circuit, source 𝑢(𝑡) 

𝐿𝑞̈ + 𝑅𝑞̇ + 𝑞/𝐶 = 𝑢 

Oscillator  

Mass 𝑚, Damping 𝑐 

Spring constant 𝑘 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 0 

Laplace’s equation 

∆𝑢(𝑥, 𝑦, 𝑧) = 0 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
= 0 

Schrödinger equation 

for 𝜓(𝒓, 𝑡) in potential 𝑉(𝒓, 𝑡) 

𝑖ℏ 𝜕𝜓 𝜕𝑡Τ = −(ℏ2/2𝑚)∆𝜓 + 𝑉𝜓 

Poisson’s equation 

∆𝜑(𝒓) = 𝑓(𝒓) 

Wave equation 

𝜕2𝑢 𝜕𝑡2Τ − 𝑐2∆𝑢 = 0 

 

 ODE linear homogeneous 

 ODE linear nonhomogeneous 

 ODE nonlinear 

 PDE linear elliptic 

 PDE linear parabolic 

 PDE linear hyperbolic 

 System of nonlinear PDEs 

 

Heat equation 

𝜕𝑢 𝜕𝑡Τ − 𝛼∆𝑢 = 0 

 

Population growth  

𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 

 

Einstein Field Equations 

𝑅𝜇𝜈 − 𝑅𝑔𝜇𝜈/2 = 8𝜋𝐺𝑇𝜇𝜈/c
4 

Source of gravity 𝑇𝜇𝜈 

𝑅𝜇𝜈 = 𝐹𝜇𝜈
1 (𝜕𝑔𝑖𝑗

|𝛼| 𝜕𝑥𝛼Τ )

𝑅 = 𝐹𝜇𝜈
2 (𝜕𝑔𝑖𝑗

|𝛼| 𝜕𝑥𝛼Τ )

|𝛼| = 0,1,2
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The general solution of an ODE will contain constants, as many as the order 

of the equation: 

𝑑𝑢

𝑑𝑥
= 0 ⟺ 𝑢(𝑥) = 𝐶

𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥) ⟺ 𝑢(𝑥) = න 𝑓(𝑥)𝑑𝑥 + 𝐶1𝑥 + 𝐶2

𝑥

𝑥0

 

A unique solution of an 𝑛-th order ODE requires 𝑛 constraints: 

A: 𝑢(𝑖)(𝑥0) = 𝑦𝑖  B: 𝑢(𝑥𝑖) = 𝑦𝑖  (𝑖 = 0,… , 𝑛 − 1) or a mix of A and B. 

Type A is called an initial value problem, even though 𝑥0 can be any 𝑥 ∈ 𝐼. 

Type B becomes a boundary value problem when 𝑛 = 2, 𝑥0 = 𝑎 and 𝑥1 = 𝑏. 

Initial value problems with time as a variable describe deterministic systems 

starting from a given state at an initial time 𝑡0. 

For the corresponding PDE: ∂x𝑢(𝑥, 𝑦) = 0 ⟺ 𝑢(𝑥, 𝑦) = 𝑓(𝑦). The solution 

of PDEs contain arbitrary functions. If Ω = {(𝑥, 𝑦)|𝑥 > 0} is the domain of 𝑢 

then 𝜕Ω = {(0, 𝑦)|𝑦 ∈ ℝ} and 𝑢|𝜕Ω = 𝑓0(𝑦) would fix a unique solution 

𝑢(𝑥, 𝑦) = 𝑓0(𝑦) but it is not always true that boundary values will guarantee 

existence or uniqueness for a solution to a PDE. 

How do you solve a differential equation? One type we have already done 

𝑦′(𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝐼. When 𝑓 ∈ 𝐶0(𝐼) the fundamental theorem of calculus 

gives a solution 𝑦0(𝑥) = ∫ 𝑓(𝑥)
𝑥

𝑥0
𝑑𝑥. If 𝑓 is merely Riemann integrable like 

𝑓(𝑥) = [𝑥 ≥ 0] ⋅ 1 then the integral will usually lack derivative somewhere. 

If 𝐹(𝑥) is any solution then 𝐹′(𝑥) = 𝑦0
′ (𝑥) and by the mean value theorem: 

𝐻(𝑥) ≡ 𝐹(𝑥) − 𝑦0(𝑥) → 𝐻(𝑥) − 𝐻(𝑥0) = (𝑥 − 𝑥0)𝐻′(𝜉) with 𝜉 ∈ (𝑥0, 𝑥). 

𝐻′(𝜉) = 0 → 𝐻(𝑥) = 𝐻(𝑥0) → 𝐹(𝑥) = 𝑦0 + 𝐶 for some 𝐶 ∈ ℝ. 

𝑦′(𝑥) = 𝑓(𝑥) with 𝑦(𝛼) = 𝛽 has a unique solution 𝑦(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝛼
+ 𝛽. 

 

 

 

 

 

 

 

 

Fig. 3.12.1  Slope fields and solutions for 𝑦′ = sin (𝑥), 𝑦′ = 𝑦2 − 𝑥 and 𝑦′ = 3𝑦2/3. 

Slope fields of 𝑦′ = 𝑓(𝑥, 𝑦) with 𝑓 continuous in a domain Ω ⊆ ℝ2 suggests 

that through every (𝑥0, 𝑦0) ∈ Ω will pass a solution that could be extended in 

both directions towards the boundary 𝜕Ω. The last example shows uniqueness 

is not guaranteed. 𝑦′ = 3𝑦2/3 has several solutions going through (0,0), such 

as 𝑦(𝑥) = 𝑥3 and 𝑦(𝑥) = [𝑥 ≤ −1] ⋅ (𝑥 + 1)3 + [𝑥 ≥ 1] ⋅ (𝑥 − 1)3. 
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There is a set of theorems on existence and uniqueness of solutions to ODE’s 

given in explicit form. With 𝑡 as independent variable they are as follows. 

Theorem. (Peano existence theorem) 

Let 𝐷 be an open subset of ℝ × ℝ and 𝑓: 𝐷 → ℝ a continuous function on 𝐷, 

then the following initial value problem with (𝑡0, 𝑦0) ∈ 𝐷 

 𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡))  

 𝑦(𝑡0) = 𝑦0 

has a local solution 𝑦: 𝐼 → ℝ in an open interval 𝐼 ∋ 𝑡0. 

Uniqueness of solutions requires more than continuity of 𝑓. It can be attained 

with Lipschitz continuity which is explained in appendix C together with 

proofs of the theorems on this page. 

Theorem. (Picard-Lindelöf theorem, existence and uniqueness of solution) 

For the same initial value problem as above with 𝑓 satisfying a Lipschitz 

condition in a neighborhood of (𝑡0, 𝑦0) the local solution will be unique. 

Theorem. (Global version of existence and uniqueness) 

If 𝑓 is continuous in a domain Ω and satisfies a Lipschitz condition in a 

neighborhood of every point (𝑡, 𝑦) ∈ Ω then there is a maximal extension of 

the solution through (𝑡0, 𝑦0) to an open interval 𝐼 s.t. one of the following 

three conditions holds when 𝑡 approach an edge of 𝐼, which can be ±∞. 

(𝑡, 𝑦(𝑡)) → (𝑡̃, 𝑦̃) ∈ 𝜕Ω |𝑡| + |𝑦(𝑡)| → ∞ (𝑡, 𝑦(𝑡)) → 𝜕Ω, no limit point. 

 

 

 

 

 

 

The theorems are true also for higher orders and systems of ODE’s. Existence 

and uniqueness give us an alternative way to introduce and define functions. 

𝑦 = 𝑒𝑥 is the unique solution to 𝑦′ = 𝑦 with 𝑦(0) = 1. sin 𝑥 and cos 𝑥 are 

solutions to 𝑦′′ = −𝑦 with different inital values for 𝑦(0) and 𝑦′(0). This can 

be rewritten as a first order ODE for 𝒚 = (𝑦1, 𝑦2) where 𝑦2 = 𝑦1′. 

𝑦 = 𝑒𝑥 ⇔ {
𝑦′ = 𝑦

𝑦(0) = 1
𝒚 = (sin 𝑥 , cos 𝑥) ⇔ {

𝒚′ = (𝑦2, −𝑦1)

𝒚(0) = (0,1)
 

A polygonal chain (𝑡𝑛, 𝒚𝑛) based on the slope field with 𝑡𝑛 = 𝑡0 + 𝑛ℎ and 

𝒚𝑛+1 = 𝒚𝑛 + ℎ𝒇(𝑡𝑛, 𝒚𝑛) gives an approximation of the graph (𝑡, 𝒚(𝑡)) with 

increasing precision with decreasing step length ℎ. This is Euler’s method. 

  

𝑡̃ 
𝑡 

Ω 
. (𝑡0, 𝑦0) 

Ω 

 

(𝑡0, 𝑦0) 
. 

𝑡 

(𝑡0, 𝑦0) 

𝑡 

. (𝑡0, 𝑦0) 
𝑡 

Ω 
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Numerical methods are fine but they do not replace solutions expressed in 

terms of elementary functions. This is a well-defined group based on finite 

compositions with arithmetic operators (+,−,×,÷), constants, exponentials, 

logarithms and solutions to algebraic equations. Trigonometric functions are 

elementary, sin 𝑧 = (𝑒𝑖𝑧 − 𝑒−𝑖𝑧)/2 and arcsin 𝑧 = −𝑖 ln(𝑖𝑧 + √1 − 𝑧2 ). 

Elementary functions are closed under derivation but not under integration. 

The error function, the integral of the normal distribution, very common in 

probability, statistics and physics is not an elementary function. 

erf(𝑥) ≡
2

√𝜋
න 𝑒−𝑡

2
𝑑𝑡

𝑥

0

D−1(𝑒−𝑥
2
) ∝ erf(𝑥) 

 

 

 

 

 

Other functions with antiderivatives that are not elementary functions are 

𝑥𝑥 , √1 − 𝑥4, 1/ ln 𝑥 , 𝑒𝑥/𝑥, sin 𝑥2 and sin(𝑥) /𝑥. These results were given by 

Liouville. Extending the definition of elementary functions to include 

antiderivation gives a broader class, the Liouvillian functions. They are all 

solutions to algebraic differential equations but the opposite is not true. 

Bessel functions is an example. They solve 𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝛼2)𝑦 = 0 

and they are not Liouvillian functions. 

Runge-Kutta methods 

Euler’s method is one in a series of methods to find approximate solutions 

to 𝑦̇ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 0. A better method is Runge-Kutta method, RK4. 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ⋅
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
𝑡𝑛+1 = 𝑡𝑛 + ℎ

𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛)

𝑘2 = 𝑓(𝑡𝑛 + ℎ/2, 𝑦𝑛 + ℎ𝑘1/2)
𝑘3 = 𝑓(𝑡𝑛 + ℎ/2, 𝑦𝑛 + ℎ𝑘2/2)

𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3)

 

With 𝑓 independent of 𝑦 the equation corresponds to integration 

𝑦′(𝑡) = 𝑓(𝑡) → 𝑦(𝑡) = න 𝑓(𝑠)𝑑𝑠 + 𝑦0

𝑡

𝑡0

 

Runge-Kutta’s method becomes equal to Simpson’s rules for calculating 

integrals. Simpson’s method is based on adjusting quadratic polynomials 

in each interval of a partitioning with constant step length. 

 



Differential equations 223 

Examples of differential equations that can be solved in “Liouvillian form” 

are linear ODE of first order: 𝑘(𝑥)𝑦′(𝑥) + 𝑔(𝑥)𝑦(𝑥) = ℎ(𝑥). 

Divide by 𝑘(𝑥) for an interval where 𝑘(𝑥) ≠ 0. 

𝑦′ + 𝑔𝑦 = ℎ for some 𝑔, ℎ ∈ C0(𝐼). 

With 𝐺(𝑥) = ∫ 𝑔(𝑡)𝑑𝑡
𝑥

𝑥0
: 

𝑒𝐺(𝑦′ + 𝑔𝑦) = 𝑒𝐺ℎ   (𝑒𝐺 integrating factor) 

𝐷(𝑒𝐺𝑦) = 𝑒𝐺ℎ 

𝑦(𝑥) = 𝑒−𝐺(𝑥) (න 𝑒𝐺(𝑡)ℎ(𝑡)𝑑𝑡
𝑥

𝑥0

+ 𝐶) 

Another ”solvable” example is when the equation has separable variables. 

𝑔(𝑦)𝑦′(𝑥) = ℎ(𝑥) where 𝑔 ∈ C0(𝐼2) and ℎ ∈ C0(𝐼1).  ( 𝑔(𝑦)𝑑𝑦 = ℎ(𝑥)𝑑𝑥 ) 

With 𝐺(𝑦) = ∫ 𝑔(𝑡)𝑑𝑡
𝑦

𝑦0
 and 𝐻(𝑥) = ∫ ℎ(𝑠)𝑑𝑠

𝑥

𝑥0
 

𝑑

𝑑𝑥
(𝐺(𝑦(𝑥)) =

𝑑

𝑑𝑥
𝐻(𝑥) ⟺ 𝐺(𝑦(𝑥)) = 𝐻(𝑥) + 𝐶 

Implicit form for the solution passing through (𝑥0, 𝑦0) 

න 𝑔(𝑡)𝑑𝑡
𝑦

𝑦0

= න ℎ(𝑠)𝑑𝑠
𝑥

𝑥0

 

Example (Chain curve a.k.a catenary) 

A string hangs from two points 𝑃1 and 𝑃2. 

 

 

 

 

 

 

 

 

 

Tension in the string gives the force a tangential direction. 

𝑑𝑦

𝑑𝑥
=
𝑉

𝐻
=
𝜆𝑔𝑠 − 𝑉1
−𝐻1

= 𝛼𝑠 + 𝛽  (𝛼 > 0) →
𝑑2𝑦

𝑑𝑥2
= 𝛼

𝑑𝑠

𝑑𝑥
= 𝛼√1 + (𝑑𝑦/𝑑𝑥)2 

This is a 1st order ODE in 𝑧(𝑥) = 𝑦′(𝑥) with separable variables. 

𝑧′

√1 + 𝑧2
= 𝛼 → arsinh(𝑧) = 𝛼(𝑥 − 𝐶) → 𝑧 = sinh(𝛼(𝑥 − 𝐶)) 

𝑦 = D−1(𝑧) =
cosh(𝛼(𝑥−𝐶))

𝛼
+ 𝐷     Translating 𝑥 − 𝐶 ↷ 𝑥 and 𝑦 − 𝐷 ↷ 𝑦 

𝑦(𝑥) =
cosh(𝛼𝑥)

𝛼
=
𝑒𝛼𝑥 + 𝑒−𝛼𝑥

2𝛼
     The chain curve or catenary

  

(𝑥0, 𝑦0) 

𝐼 

 

𝑥 

𝑦 

  

(𝑥0, 𝑦0) 

𝐼1 

 

𝑥 

𝑦 

 

 

𝐼2 

 
 

 

𝐹↓ = (0,−𝜆𝑔𝑠) 

𝑉1 

𝐻1 𝑃1 

𝑃 = (𝑥, 𝑦) 

𝑉 

𝐻 

𝑠: Arc length 𝑃1𝑃 

𝜆: Linear density of string 

𝑔: Graviational field (𝑁/𝑘𝑔) 

𝐻1, 𝑉1, 𝐻, 𝑉: Horizontal and vertical 

 force components at 𝑃1 and 𝑃. 

Static equilibrium → {
𝐻 + 𝐻1 = 0
𝑉 + 𝑉1 = 𝜆𝑔𝑠

 

 

𝑃2 



224 Chapter 3.  Basics 

Our last example of equations to look at are linear ODE of order 𝑛: 

∑ 𝑎𝑘(𝑥)𝑦
𝑘(𝑥)

𝑛

𝑘=0
= 𝑔(𝑥)   𝑦(𝑥) ∈ C𝑛(𝐼) ∧  𝑎𝑘(𝑥), 𝑔(𝑥)  ∈  C

0(𝐼)  

𝑥 belongs to a domain 𝐼 ⊆ ℝ but the range of functions can be either real or 

complex. The equation is homogeneous if𝑔(𝑥) ≡ 0. 

A useful concept and notation here is to introduce a differential operator ℒ(𝑦) 

which is a function that operates on a function to produce another function, 

ℒ: C𝑛(𝐼) → C0(𝐼) , 𝑦 ↷ ℒ𝑦 = ∑ 𝑎𝑘𝐷
𝑘𝑦𝑛

𝑘=0 . 

Solutions of ℒ𝑦ℎ=0 form a linear space ℒ𝑦1=0, ℒ𝑦2=0 ⇒ ℒ(𝑐1𝑦1 + 𝑐2𝑦2)=0. 

Adding any of the solutions of ℒ𝑦𝑝=𝑔 called a particular solution gives the 

solution space for ℒ𝑦=𝑔. When the coefficients 𝑎𝑘 are constants the solutions 

form an 𝑛-dimensional affine space, a linear space with no particular point of 

origin, 𝑦 = 𝑦𝑝 + 𝑦ℎ = 𝑦𝑝 + ∑ 𝑐𝑘𝑦𝑘
𝑛
𝑘=1  with 𝑐𝑘 ∈ ℝ or ℂ and ℒ𝑦𝑘=0. 

Homogeneous linear ODE with constant coefficients of order 𝑛, ℒ𝑦 = 0: 

𝑦(𝑛) + 𝑎𝑛−1𝑦
(𝑛−1) +⋯+ 𝑎1𝑦

′ + 𝑎0 = 0 

ℒ(𝑒𝑟𝑥) = 𝑙(𝑟)𝑒𝑟𝑥 Where 𝑙(𝑟) ≡ 𝑟𝑛 + 𝑎𝑛−1𝑟
𝑛−1 +⋯+ 𝑎1𝑟 + 𝑎0 

 is the characteristic polynomial. 

 𝑙(𝑟0) = 0 ⟹ 𝑦 = 𝑒𝑟0𝑥 solves ℒ𝑦 = 0. 

Theorem. 

Let 𝑙(𝑟) = ∏ (𝑟 − 𝑟𝑘)
𝑛𝑘𝜈

𝑘=1  be the characteristic polynomial of ℒ𝑦 = 0 then 

𝑦(𝑥) = ∑ 𝑃𝑘(𝑥)𝑒
𝑟𝑘𝑥𝜈

𝑘=1  with polynomials 𝑃𝑘of deg(𝑃𝑘)<𝑛𝑘 solves ℒ𝑦 = 0 

and in reverse, all solutions to ℒ𝑦 = 0 are of this form. 

Real solutions when 𝑎𝑘 ∈ ℝ arise from conjugate roots: 

𝔑𝔢(𝑐1𝑒
(𝛼+𝑖𝛽)𝑥 + 𝑐2𝑒

(𝛼−𝑖𝛽)𝑥) = 𝑒𝛼𝑥(𝐶 cos 𝛽𝑥 + 𝐷 sin 𝛽𝑥) = 𝐴𝑒𝛼𝑥 sin(𝛽(𝑥 + 𝛿)) 

Proof. 

I. 

𝑦 linear combination of functions 𝑥𝑝𝑒𝑟𝑘𝑥 with 𝑝 < 𝑛𝑘 ⇒ ℒ𝑦 = 0. 

𝐷(𝑒𝑟𝑥𝑧(𝑥)) = 𝑒𝑟𝑥(𝐷 + 𝑟)𝑧(𝑥) → induction → 𝐷𝑘(𝑒𝑟𝑥𝑧(𝑥)) = 𝑒𝑟𝑥(𝐷 + 𝑟)𝑘𝑧(𝑥) 

𝑙(𝑟) = ∏ (𝑟 − 𝑟𝑘)
𝑛𝑘

𝑘  → 𝑙(𝐷 + 𝑟𝑖) = 𝑙𝑖(𝐷)𝐷
𝑛𝑖  {

where 𝑟𝑖  is a root of 𝑙(𝑟)

and 𝑙𝑖  is a polynomial
of degree 𝑛 − 𝑛𝑖

 

ℒ(𝑥𝑝𝑒𝑟𝑖𝑥) = 𝑙(𝐷)(𝑒𝑟𝑖𝑥𝑥𝑝) = 𝑒𝑟𝑖𝑥𝑙(𝐷 + 𝑟𝑖)𝑥
𝑝 = 𝑒𝑟𝑖𝑥𝑙𝑖(𝐷) 𝐷

𝑛𝑖𝑥𝑝⏟  
𝑝<𝑛𝑖

= 0 

Linearity of ℒ ⇒ ℒ𝑦 = 0 

II. 

ℒ𝑦 = 0 ⇒ 𝑦 linear combination of functions 𝑥𝑝𝑒𝑟𝑘𝑥 with 𝑝 < 𝑛𝑘, 

is left as an exercise for the reader.
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λ 

Now we only need to find one solution 𝑦𝑝 to ℒ(𝑦) = 𝑔 to find them all since 

if 𝑦𝑝′ where any other solution then 𝑦𝑝′ = 𝑦𝑝 + (𝑦𝑝′ − 𝑦𝑝) and 𝑦𝑝′ − 𝑦𝑝 

belongs to the solution set of ℒ(𝑦) = 0 that we already know. 

ℒ(𝑦) = 𝑔 has already been solved in the first order: 𝑦′ − 𝑟𝑦 = 𝑔 by using an 

integrating factor, 𝑦(𝑥) = 𝑒𝑟𝑥 ∫ 𝑒−𝑟𝑡𝑔(𝑡)𝑑𝑡
𝑥

𝑥0
= ∫ 𝑒𝑟(𝑥−𝑡)𝑔(𝑡)𝑑𝑡

𝑥

𝑥0
. Applying 

a solution of the form 𝑦(𝑥) = ∫ 𝐾(𝑥 − 𝑡)𝑔(𝑡)
𝑥

𝑥0
 for order 𝑛 leads to: 

Theorem. 

 {

ℒ(𝐾) = 0 

𝐾(𝑖) = 0 for 𝑖 = 0,1, … , 𝑛 − 2   

𝐾(𝑛−1)(0) = 1

⟹    
𝑦(𝑥) = න 𝐾(𝑥 − 𝑡)𝑔(𝑡)𝑑𝑡

𝑥

𝑥0

solves ℒ(𝑦) = 𝑔

 

For some 𝑔(𝑥) solutions to ℒ(𝑦) = 𝑔 can be found by making an ansatz. 

I 𝑔(𝑥) = 𝑃𝑛(𝑥) a polynomial of degree 𝑛, then there is a solution 

 with 𝑦𝑝(𝑥) = 𝑥
𝑚𝑄𝑛(𝑥) with 𝑄 a polynomial of degree 𝑛, 

 𝑚 the multiplicity of 𝑟 = 0. (non-roots have multiplicity zero) 

II 𝑔(𝑥) = 𝑃𝑛(𝑥)𝑒
𝑘𝑥, 𝑘 ∈ ℂ reduces to case I. with ansatz 𝑦𝑝(𝑥) = 𝑒

𝑘𝑥𝑧(𝑥). 

III If 𝑎𝑘 ∈ ℝ then ℒ(𝑦𝑝) = 𝑔(𝑥) ⇒ {
ℒ(𝑅𝑒(𝑦𝑝)) = 𝑅𝑒(𝑔(𝑥))

ℒ(𝐼𝑚(𝑦𝑝)) = 𝐼𝑚(𝑔(𝑥))
 

 𝑔(𝑥) = 𝑃𝑛(𝑥)𝑒
𝛼𝑥 ⋅ {

cos 𝛽𝑥
sin 𝛽𝑥

 are treated by handling 𝑃𝑛(𝑥)𝑒
(𝛼+𝑖𝛽)𝑥. 

IV ℒ(𝑦) = 𝑔1 + 𝑔2 is solved by 𝑦1 + 𝑦2 if ℒ(𝑦1) = 𝑔1 and ℒ(𝑦2) = 𝑔2. 

 

Examples from physics 

 

 

 
Fig 3.12.2  Damped harmonic oscillator and RLC-circuit. 

The harmonic oscillator and the RLC-circuit are physical models that use 

2nd order linear ODEs with constant coefficient to describe phenomena 

and applications of great importance. The oscillator describes motion 

around an equilibrium position and the RLC-circuit has the power to 

generate and receive electromagnetic waves, the basis for communication 

via radio waves. 



226 Chapter 3.  Basics 

The harmonic oscillator has a restoring force, modelled by a spring. To 

first approximation the force is proportional to the displacement. This 

covers small oscillation for any restoring force. 

𝐹 = −𝑘 ⋅ 𝑥 𝑘: spring constant 

 𝑥(𝑡): displacement from equilibrium 

𝑚𝑥̈ + 𝑘𝑥 = 0 By Newton’s 2nd law, 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑥̈ 

𝑟2 + 𝑘 𝑚Τ = 0 

𝑟1,2 = ±𝑖√𝑘/𝑚 → 𝑥(𝑡) = 𝐴 cos(𝜔0𝑡 + 𝜑),   𝜔0 = √𝑘/𝑚  

Undamped angular frequency 𝜔0 = 2𝜋𝑓, resonance frequency 𝑓. 

Most real oscillators have friction, modeled (as a first approximation) 

by a damping force proportional to velocity. 

𝐹 = −𝜆𝑥̇ 𝜆: damping coefficient 

𝑚𝑥̈ + 𝜆𝑥̇ + 𝑘𝑥 = 0 → 3 types of damping depending on if the roots 

 are real, imaginary or a double root. 

 𝜁 = 𝜆/(2√𝑚𝑘): damping ratio 

With a driving force 𝐹(𝑡) = 𝐹0cos𝜔𝑡 acting on the oscillating object: 

𝑚𝑥̈ + 𝜆𝑥̇ + 𝑘𝑥 = 𝐹0cos𝜔𝑡 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡)             
𝑥ℎ(𝑡) is transient and is damped away

𝑥𝑝(𝑡) is steady state motion
 

𝑥𝑝(𝑡) =
𝐹0
𝑚𝜔𝑍

sin(𝜔𝑡 + 𝜑) 

𝑍 = √(2𝜔0𝜁)
2 + (𝜔0

2 − 𝜔2)/𝜔2: mechanical impedance 

A solution with no damping, 𝜁 = 0: 

𝑥(𝑡) =
𝐹0

𝑚(𝜔0
2−𝜔2)

(cos𝜔𝑡 − cos𝜔0𝑡) =
−2𝐹0

𝑚(𝜔0
2−𝜔2)

sin
𝜔−𝜔0

2
𝑡 sin

𝜔+𝜔0

2
𝑡  

has an oscillating amplitude of maximal size 2𝐹0/(𝑚|𝜔0
2 − 𝜔2|). 

A driving force like the wind can cause a bridge to collapse if it creates a 

force with frequency close to the resonance frequency of the bridge. 

 

 

 

 

 

 

Fig. 3.12.3  Amplitudes for different dampings, Tacoma bridge collapse in 1940.

𝐴 

𝜔/𝜔0 
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Kirchoff’s law gives 𝑅𝐼 = 𝑉𝐿 + 𝑉𝐶 + 𝑉𝑆 → 𝐿𝐼̈ + 𝑅𝐼̇ + 𝐼/𝐶 = 𝑉𝑆̇. 

The parallell circuit follows a similar equation, a dual version with 

rearranged parameters, voltage to solve for and a current as source term. 

Spring Serial circuit Parallell circuit 

displacement 𝑥(𝑡) charge 𝑞(𝑡) = ∫ 𝐼𝑑𝑠
𝑡

 𝜑(𝑡) = ∫ 𝑉𝑑𝑠
𝑡

 

velocity 𝑣 = 𝑥̇ current 𝐼 = 𝑞̇ voltage 𝑉 = 𝜑̇ 

mass 𝑚 inductance 𝐿 capacitance 𝐶 

spring constant 𝑘 1/𝐶 1/𝐿 

damping 𝜆 resistance 𝑅 1/𝑅 

Applied force 𝐹(𝑡) voltage source 𝑉𝑆(𝑡) current source 𝐼𝑆(𝑡) 

𝜔0 = √𝑘/𝑚
 𝜔0 = 1/√𝐿𝐶

 𝜔0 = 1/√𝐿𝐶 

𝑚𝑥̈ + 𝜆𝑥̇ + 𝑘𝑥 = 𝐹 𝐿𝐼̈ + 𝑅𝐼̇ + 𝐼/𝐶 = 𝑉̇𝑆 𝐶𝑉̈ + 𝑉̇/𝑅 + 𝑉/𝐿 = 𝐼𝑆̇ 

A pure LC-circuit generates an undamped 

harmonic oscillation between a magnetic 

dipole field from the coil and an electric 

dipole field from the capacitor. 

Forced oscillations with 𝑉 = 𝑉0 sin𝜔 𝑡 

𝐼̈ + 𝑅/𝐿 𝐼̇ + 1/𝐶 𝐼 = 𝜔𝑉0 cos𝜔𝑡 

𝑟1,2 = −𝛾 ± 𝑖𝜔ℎ → 𝐼ℎ ∝ 𝑒
−𝛾𝑡 sin(𝜔ℎ𝑡 + 𝛼) 

Reactance  𝑅 = 𝜔𝐿 − 1/(𝜔𝐶)

Impedance  𝑍 = √𝑅2 + 𝑋2
, 𝐼0 =

𝑉0
𝑍
→ 𝐼𝑝 = 𝐼0 sin(𝜔𝑡 − 𝜑) 

Two separate RLC-circuits with electromagnetic 

induction from one circuit to the other leads to two 

coupled differential equations. The same works for 

mechanically coupled oscillators. 

{
𝐿1𝐼1̈ + 𝑅1𝐼1̇ + 𝐼1/𝐶1 = −𝑀𝐼2̈
𝐿2𝐼2̈ + 𝑅2𝐼2̇ + 𝐼2/𝐶2 = −𝑀𝐼1̈

 

The discovery of electrical oscillations where made by F. Savay in 1826 

with Leyden jars as capacitors and with a wire around an iron needle as 

inductor. In 1853 Kelvin calculated and demonstrated the resonance 

frequency of an RLC-circuit. Work by Maxwell and Hertz lead the 

discovery that radio waves could be generated from one circuit to be 

picked up by another circuit. The first radio system was built in 1900 by 

Guglielmo Marconi. 

𝑉𝑅 = 𝑅𝐼 = 𝑅𝑄̇ 

𝑉𝐿 = −𝐿𝐼 ̇

𝑉𝐶 = −𝑄/𝐶 
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To each differential equation there is a discretized version, like the Euler 

method 𝒚𝑛+1 = 𝒚𝑛 + ℎ𝒇(𝑡𝑛, 𝒚𝑛) is a discrete version of 𝒚′(𝑡) = 𝒇(𝑡, 𝒚(𝑡)). 

A recurrence relation defines a sequence like a differential equation defines 

a function. If the differential equation has a solution in closed form it seems 

there should be a solution in closed form for the recurrence relation as well. 

A homogeneous linear recurrence relation with constant coefficients is: 

𝑦𝑘 = 𝑎1𝑦𝑘−1 + 𝑎2𝑦𝑘−2 +⋯+ 𝑎𝑛𝑦𝑘−𝑛   𝑘 ∈ {𝑛, 𝑛 + 1,… }   (∗) 

With 𝑎𝑛 ≠ 0 this is an equation of order 𝑛. It has a unique solution for given 

initial values of 𝑦0, 𝑦1, … , 𝑦𝑛−1. The term difference equation is sometime 

used as a synonym even though it seems more natural to reserve the term for 

equations expressed in terms of difference operators 

∆𝑦𝑘 = 𝑦𝑘+1 − 𝑦𝑘 ∆2𝑦𝑘 = 𝑦𝑘+2 − 2𝑦𝑘+1 + 𝑦𝑘 … 𝑦𝑘+𝑛 = ∑ (
𝑛
𝑖
) ∆𝑖𝑦𝑘

𝑛
𝑖=0   

Order 1: 𝑦𝑘 = 𝑎1𝑦𝑘−1 → 𝑦𝑘 = 𝑦0𝑎1
𝑘 

Making an ansatz 𝑦𝑘 = 𝑐𝑟
𝑘 gives a solution to (∗) if 𝑟 is a root of the 

characteristic polynomial of (∗):𝑃(𝑡) = 𝑡𝑛 − 𝑎1𝑡
𝑛−1 −⋯− 𝑎𝑛−1𝑡 − 𝑎𝑛. 

Theorem. 

If the characteristic polynomial of 𝑦𝑘 = 𝑎1𝑦𝑘−1 + 𝑎2𝑦𝑘−2 +⋯+ 𝑎𝑛𝑦𝑘−𝑛 is 

𝑃(𝑡) = ∏ (𝑡 − 𝑟𝑖)
𝑛𝑖𝜈

𝑖=1  then the general solution for 𝑦𝑘  is given by: 

𝑦𝑘 = ∑ 𝑄𝑖(𝑘)𝑟𝑖
𝑘

𝜈

𝑖 = 1

 with 𝑄𝑖(𝑡) = 𝑐0 + 𝑐1𝑡 + ⋯+ 𝑐𝑛𝑖−1𝑡
𝑛𝑖−1 

The most famous example is the Fibonacci sequence 𝑦𝑘 = 𝑦𝑘−1 + 𝑦𝑘−2 with 

𝑦0 = 0 and 𝑦1 = 1 which becomes 0,1,1,2,3,5,8,13,21,34, …. The sequence 

was presented by Fibonacci in his book Liber Abaci from 1202. Fibonaci was 

not the first to study the sequence. Indian mathematicians had used it already 

in 200 BC to enumerate patterns of long and short syllables (Exercise. 3.10). 

The Fibonacci numbers occur in so many diverse areas of mathematics that 

they have their own jounal, the Fibonacci Quarterly. 

Fibonacci’s original application of the sequence was to count rabbits, or the 

growth potential of any unrestrained population. Start with a young rabbit 

pair at month 1, 𝐹(0) = 0 and 𝐹(1) = 1. Pairs will mate and produce a new 

pair once a month once they are one month old and they will never die. The 

number of rabbit pairs in month 𝑘 will be: 

𝐹𝑘 = 𝐹𝑘−1(aging rabbit pairs) + 𝐹𝑘−2(rabbits old enough to reproduce)
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𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

𝐹0 = 0 and 𝐹1 = 1 

Roots of characteristic polynomial: 

𝑡2 − 𝑡 − 1 = 0 → 𝑟1,2 = (1 ± √5)/2 

Golden ratio 𝜑 ≡ (1 + √5)/2 = 1.618… 

𝜓 ≡ (1 − √5) 2Τ = 1 − 𝜑 = −0.618… 

𝐹0 = 0
𝐹1 = 1

→ 𝐹𝑛 =
𝜑𝑛 − 𝜓𝑛

√5
→ lim

𝑛→∞

𝐹𝑛+𝑘
𝐹𝑛

= 𝜑𝑘          Exponential growth 

No biotope consists of a single species and animals die. A model that takes 

this into account is the predator-prey model. It tracks the number of predators 

and preys, like rabbits and foxes.  The continuous version of this model is the 

Lotka-Volterra equations, two coupled differential equations. A drawback 

of using a continuous model is that it does not capture the possibility of a 

species going extinct when its numbers are low. This is the atto-fox problem, 

with only 10−18 foxes left they could still recover but the purpose of using a 

model is to simplify things and still capture something essential of what is 

modelled. Some aspects are bound to be lost in a model. 

𝑥(𝑡) Number of prey 

𝑦(𝑡) Number of predators 

𝑥̇, 𝑦̇ Growth rates of prey and predators 

𝛼 Rate of growth of prey without predation 

𝛽 Rate of predation, 𝑥𝑦 measures likelihood of contact predator-prey 

𝛿 Growth rate of predators, proportional to number of preditors and pray 

𝛾 Loss rate due to competition among predators for prey 

Among the many underlying assumptions are unlimited food supply for prey. 

The system is non-linear and has no solution given by elementary functions. 

Nevertheless, solutions are periodic in 𝑡. This can be understood by looking 

at 𝑥̇/𝑦̇ = 𝑑𝑥/𝑑𝑦 and 𝑦̇/𝑥̇ = 𝑑𝑦/𝑑𝑥 = (𝛿𝑥𝑦 − 𝛾𝑦)/(𝛼𝑥 − 𝛽𝑥𝑦) = 𝑓(𝑥, 𝑦), a 

slope field that turns out to have closed orbits in phase space (𝑥, 𝑦). 

{
𝑥̇ = 𝛼𝑥 − 𝛽𝑥𝑦
𝑦̇ = 𝛿𝑥𝑦 − 𝛾𝑦

  𝛼, 𝛽, 𝛾, 𝛿 ∈ ℝ+ 

𝑥 

𝑦 

• 

Equilibrium 

(𝑥, 𝑦) = (
𝛾

𝛿
,
𝛼

𝛽
) 


