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Chapter 4 

Return 

In this chapter we will return to our introductory 

problem and get some glimpses from the field of 

number theory. 

4.1 Reminiscence 

The question from the beginning of the book, in a slightly elaborated version 

was to find a digit sequence xyz… such that: 

A:    0.xyz........ 

B:    0.00xyz...... ( B=1% of A=10-2A ) 

C:    0.00000xyz... ( C=1‰ of B=10-5A ) 

A+B+C=0.99999999... 

This is easily solved by setting up the equation 𝐴 + 10−2𝐴 + 10−5𝐴 = 1. 

The digit sequence is found by long division on 𝐴 = 105/(105 + 103 + 1). 

The procedure of long division shows that the decimal expansion of 𝑝/𝑞 is 

either finite or ends with a repeating digit sequence of length ≤ 𝑞 − 1. The 

division algorithm gives us xyz…= 990089207…0099900000 with 16 640 

digits in the repeating sequence. Elaborating a bit more: 

𝐴 + 𝐵 + 𝐶 + 𝐷 = 1     
𝐵 = 1% of 𝐴
𝐶 = 1ppm of 𝐵
𝐷 = 1‰ of 𝐶

→ 𝐴 =
102+6+3

102+6+3 + 106+3 + 103 + 1
 

𝐴 is a fraction with a repeating sequence that is 25 014 018 913 digits long. 

With the simple probability model for decimal expansion on page 105 such 

long repeaters should not occur. A better model is needed to analyze periods 

of fractions. The repeating sequence and its length depends on the base of the 

expansion, it is not a property of the fraction itself. A better analysis should 

cover all bases, not just decimal expansions. 

4.2 Reptends and Base 

A good place to start is with terminology. The shortest repeating sequence at 

the end of an expansion is called reptend. The length of the reptend is called 

the period. Rational numbers, expressed in a certain base can be divided into 

those with a finite number of digits, called terminating or regular numbers 
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and those that ends with a repeating sequence that is not 0̅ or 𝑏 − 1̅̅ ̅̅ ̅̅ ̅, (base 𝑏). 

These numbers have many names: repeating, recurring, non-terminating 

or non-regular. Terms used for numbers expanded in a selection of bases are 

binary-2, ternary-3, quaternary-4, quinary-5, senary-6, septenary-7, octal-8, 

nonary-9, decimal-10, undecimal-11, duodecimal-12, hexadecimal-16, vi-

gesimal-20 and sexagesimal-60. 

Theorem. 

Every base 𝑏 expansion of the form 𝑧 = (𝑥1…𝑥𝑖 . 𝑦1…𝑦𝑗𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅ )
𝑏
∈ ℚ 

𝑖, 𝑗 ∈ {0,1,… }, 𝑘 ∈ {1,2, … }, 𝑏 ∈ {2,3, … }, 𝑥𝑙 , 𝑦𝑚 , 𝑟𝑛 ∈ {0,1, … , 𝑏 − 1} 

Proof. 

𝑏𝑗𝑧 = 𝑥1…𝑥𝑖𝑦1…𝑦𝑗 . 𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅          
(𝑏𝑗+𝑘 − 𝑏𝑗)𝑧 ∈ ℤ

𝑏𝑗+𝑘 − 𝑏𝑗 ∈ ℤ+
} ⟹ 𝑧 ∈ ℚ ∎ 

The converse, every rational has the form above follows from long division. 

The reptend is the first appearance of the repeating part in the expansion, its 

preceding digit must differ from 𝑟𝑘 and it has no repeating subpart but it may 

straddle the decimal point, or rather the radix point, a name for all bases. 

The sequence 𝑦1. . 𝑦𝑗  after radix point and before reptend is called transient. 

When going in the other direction, finding reptends and periods of a rational 

number it will always be assumed, even if not stated that 𝑚/𝑛 is in reduced 

form (𝑚, 𝑛) = 1, no common factors, 𝑚 and 𝑛 are relatively prime a.k.a. 

co-prime. The 𝑥-part is not very interesting, if 𝑧 = 𝑚/𝑛 it is just ⌊𝑚/𝑛⌋ so 

from now on we will assume 𝑚 ∈ {1,2, … , 𝑛 − 1} and 𝑧 = (0. 𝑦𝑟̅)𝑏.  

Theorem. 

𝑚/𝑛 is terminating in base 𝑏 ⟺ 𝑛 has no prime factors other than those in 𝑏 

Proof. 

⇒ 
𝑚/𝑛 is terminating 

(𝑚, 𝑛) = 1
} ⇒ ∃𝑁: 𝑏𝑁 ⋅

𝑚

𝑛
∈ ℤ ⇒ 𝑛|𝑏𝑁 ⇒ {

𝑛 has no factors
other than 𝑏′𝑠

  

 

⇐ 
𝑛 = ∏ 𝑏𝑖

𝑎𝑖𝑘
𝑖=1

𝑏𝑖|𝑏
} ⇒

𝑚

𝑛
⋅ 𝑏𝑎1+⋯+𝑎𝑘⏟      
moves radix point

= 𝑚(
𝑏

𝑏1
)
𝑎1
⋅ … ⋅ (

𝑏

𝑏𝑘
)
𝑎𝑘
∈ ℤ ⟹ 

 𝑚/𝑛 is a terminating number in base 𝑏. ∎ 

For base 2 the only regular numbers are 𝑚/2𝑘and for base 10, 𝑚/(2𝑎5𝑏). 
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Theorem. 

The number of decimals in 1/(2𝑎5𝑏) is max(𝑎, 𝑏). 

Proof. 

1/(2𝑎5𝑏) = 0. 𝑑1…𝑑𝑁 ⇒ 𝑁 = min{𝑘 ∈ ℤ+|𝑧 ⋅ 10𝑘 ∈ ℤ} 

𝑧 ⋅ 10max (a,b) ∈ ℤ
𝑧 ⋅ 10max(a,b)−1 ∉ ℤ

} ⟹ 𝑁 = max (𝑎, 𝑏) ∎ 

The natural counterpart for base 𝑏 = ∏ 𝑏𝑖
𝑘𝑖𝑁

𝑖=1  with primes 𝑏𝑖 is: 

𝑧 = (∏ 𝑏𝑖
𝑘𝑖)𝑁

𝑖=1

−1
 with 𝑘 ∈ ℕ0 has max

1≤𝑖≤𝑁
(𝑘𝑖)  digits after the radix point.  

There is no transient when the denominator is coprime with the base. 

Theorem. 

𝑧 =
𝑚

𝑛
= (0. 𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅ )𝑏 ⟺ (𝑛, 𝑏) = 1             (𝑚, 𝑛) = 1 and 0 < 𝑚 < 𝑛 

Proof. 

⇒ (𝑏𝑘 − 1)𝑧 = 𝑟1…𝑟𝑘 ⇒ 𝑧 =
𝑟1…𝑟𝑘

𝑏𝑘−1
=

𝑚

𝑛
     (𝑚, 𝑛) = 1 

 (𝑏𝑘 − 1, 𝑏) = 1 and 𝑛|(𝑏𝑘 − 1) ⇒ (𝑛, 𝑏) = 1 

 

⇐ is the same as showing: 

 𝑧 = 0. 𝑦1…𝑦𝑗⏟    
𝑦

𝑟1…𝑟𝑘⏟  
𝑟

̅̅ ̅̅ ̅̅ ̅̅  with 𝑗, 𝑘 ≥ 1 and 𝑦𝑗 ≠ 𝑟𝑘  ⟹ 𝑧 = 𝑚/𝑛 ∧ (𝑛, 𝑏) ≠ 1 

 𝑏𝑗+𝑘𝑧 − 𝑏𝑗𝑧 = 𝑦1…𝑦𝑗𝑟1…𝑟𝑘 − 𝑦1…𝑦𝑗 → 𝑧 =
𝑦𝑏𝑘+𝑟−𝑦

𝑏𝑗(𝑏𝑘−1)
 

 𝑦𝑏𝑘 + 𝑟 − 𝑦 (mod 𝑏) = 𝑟 − 𝑦 (mod 𝑏) = 𝑟𝑘 − 𝑦𝑗(mod 𝑏) ≠ 0 ⟹ 

 𝑧 = 𝑚/𝑛 with (𝑛, 𝑏) ≠ 1 ∎ 

 

∴ 𝑚/𝑛 has digits preceding the reptend iff 𝑛 has some factor from the base. 

The number of digits in the transient of 𝑚/𝑛 where 𝑛 = 𝑛′ ⋅ ∏ 𝑏𝑖
𝑘𝑖𝑁

𝑖=1  with 

(𝑛′, 𝑏) = 1 and 𝑏𝑖|𝑏 is max
1≤𝑖≤𝑁

(𝑘𝑖). 

In the rest of this chapter focus will be on the reptend and the number of 

digits in the reptend i.e. the period of 𝑚/𝑛. 

Theorem. 

The period of 𝑚/𝑛 divides the period of 1/𝑛. 

Regular number are assumed to have period one, with “reptend” 0 or 𝑏 − 1. 
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Proof. 

1/𝑛 = 0. 𝑦1 …𝑦𝑗⏟    
𝑦

. 𝑟1…𝑟𝑘⏟  
𝑟

̅̅ ̅̅ ̅̅ ̅̅ = 𝑦𝑏−𝑗 + 𝑟(𝑏−(𝑗+𝑘) + 𝑏−(𝑗+2𝑘) +⋯) 

𝑚/𝑛 = 𝑚𝑦𝑏−𝑗 +𝑚𝑟(𝑏−(𝑗+𝑘) + 𝑏−(𝑗+2𝑘) +⋯) 

If 𝑚𝑟 has more than 𝑘 digits divide it into blocks of length 𝑘, starting from 

the right and add them repeatedly to get a sequence of 𝑘 digits or less. 

Prepend the sequence with zeroes to get a repeating 𝑘-digit sequence. The 

repeating part may equal 𝑏 − 1̅̅ ̅̅ ̅̅ ̅ which makes 𝑚/𝑛 regular or it may contain a 

repeating subsequence that makes the period of 𝑚/𝑛 a divisor of 1/𝑛. ∎ 

Example. 

1/880 = 0.001136̅̅̅̅ = 𝑦 + 36(10−6 + 10−8 +⋯)  Reptend=36  Period=2 

751/880 = 𝑦1 + 751 ⋅ 36(10
−6 + 10−8 +⋯)  (𝑦 and 𝑦𝑖  are terminating) 

 = 𝑦1 + 27036⏟  
02+70+36

(10−6 + 10−8 +⋯) 

 = 𝑦2 + 108⏟
01+08

(10−6 + 10−8 +⋯) 

 = 𝑦3 + 09(10
−6 + 10−8 +⋯)  Reptend=09  Period=2 

A situation with a reptend of 𝑚/𝑛 dividing the reptend of 1/𝑛 would be if we 

got a situation 𝑟1𝑟1, a period one reptend or say if starting from period 6 with 

𝑟1…𝑟6̅̅ ̅̅ ̅̅ ̅̅  and ending up with 𝑟1𝑟2𝑟1𝑟2𝑟1𝑟2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑟1𝑟2̅̅ ̅̅ ̅ of period 2. A search for such 

examples will be futile. 

Proof that the periods of 𝑚/𝑛 and 1/𝑛 are always equal will be given shortly 

or rather two proofs; one based on modular arithmetic and a second proof 

using group theory. With no need for numerators let 𝑇𝑛 designate the period 

of 1/𝑛 in base 10 and let 𝑇𝑛(𝑏) be the period of 1/𝑛 in base 𝑏. 

Factors from the base can be separated from the denominator and removed 

without affecting the period. 

Theorem. 

𝑇𝑛(𝑏) = 𝑇𝑛′(𝑏) if 𝑛 = 𝑛
′ ⋅ 𝑏′ where 

𝑛′ has no factor of the base
𝑏′ has only factors of the base

 

Proof. 

Extend numerator and denominator of 1/𝑛 with factors from the base 

to get a pure power of the base in the denominator. 

1

𝑛
=

1

𝑛′𝑏′
=
𝑏′′

𝑛′𝑏𝑘
    
𝑏′′ has no affect on the period and

𝑏𝑘 only moves the radix point.
 

∴ The period of 1/𝑛 and 1/𝑛′ must be the same. ∎ 
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Expansion of 1/𝑛 in base 10 as 0. 𝑦1…𝑦𝑗𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅  

𝑛 𝑦1…𝑦𝑗  𝑟1…𝑟𝑘 𝑇𝑛 𝑛 𝑦1…𝑦𝑗  𝑟1…𝑟𝑘 𝑇𝑛 𝑛 𝑦1…𝑦𝑗  𝑟1…𝑟𝑘 𝑇𝑛 

1 − − − 34 0 294..235 16 67 − 014..597 33 

2 5 − − 35 0 285714 6 68 01 470..176 16 

3 − 3 1 36 02 7 1 69 − 014..971 22 

4 25 − − 37 − 027 3 70 0 142857 6 

5 2 − − 38 0 263..105 18 71 − 014..169 35 

6 1 6 1 39 − 025641 6 72 013 8 1 

7 − 142857 6 40 025 − − 73 − 013..863 8 

8 125 − − 41 − 024390 6 74 0 135 3 

9 − 1 1 42 0 238095 6 75 01 3 1 

10 1 − − 43 − 023..093 21 76 01 315..526 18 

11 − 09 2 44 02 27 2 77 − 012987 6 

12 08 3 1 45 0 2 1 78 0 128205 6 

13 − 076923 6 46 0 217..565 22 79 − 012..481 13 

14 0 714285 6 47 − 021..617 46 80 0125 − − 

15 0 6 1 48 0208 3 1 81 − 012..679 9 

16 0625 − − 49 − 020..551 42 82 0 12195 5 

17 − 058..647 16 50 02 − − 83 − 012..253 41 

18 0 5 1 51 − 019..549 16 84 01 190476 6 

19 − 052..421 18 52 01 923076 6 85 0 117..294 16 

20 05 − − 53 − 018..283 13 86 0 116..465 21 

21 − 047619 6 54 0 185 3 87 − 011..977 28 

22 0 45 2 55 0 18 2 88 011 36 2 

23 − 043..913 22 56 017 857142 6 89 − 011..191 44 

24 041 6 1 57 − 017..807 18 90 0 1 1 

25 04 − − 58 0 172..655 28 91 − 010989 6 

26 0 384615 6 59 − 016..661 58 92 01 086..826 22 

27 − 037 3 60 01 6 1 93 − 010..043 15 

28 03 571428 6 61 − 016..459 60 94 0 106..085 46 

29 − 034..931 28 62 0 161..645 15 95 0 105..842 18 

30 0 3 1 63 − 015873 6 96 01041 6 1 

31 − 032..129 15 64 015625 − − 97 − 010..567 96 

32 03125 − − 65 0 153846 6 98 0 102..755 42 

33 − 03 2 66 0 15 2 99 − 01 2 

Fig. 4.1  Table of 0. 𝑦1…𝑦𝑗𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅  for 1/𝑛 with 𝑛 = 1,2,… ,99. 

 

If 𝑛 = 2𝑎5𝑏𝑛′ with 𝑛′ coprime to 10 then the number of digits in 𝑦1 …𝑦𝑗 

equals max (𝑎, 𝑏). If 𝑛 only has factors from the base, 𝑛′ = 1 and there will 

be no reptend. The period is unaffected by base factors 𝑇𝑛 = 𝑇𝑛′. The period 

of 1/𝑛 is often referred to as the period of 𝑛. 
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4.3 Modular Arithmetic 

The decimal part of 𝑚/𝑛 and (𝑚 + 𝑘𝑛)/𝑛  

(𝑚, 𝑘 ∈ ℕ0,𝑛 ∈ ℕ1) are identical. When we 

study fractions with denominator 𝑛 we can 

regard 𝑚 and 𝑚 + 𝑘𝑛 as the same object. If 

we expand the domain of 𝑚 and 𝑘 into ℤ 

nothing much happens. If 𝑚 and 𝑚 + 𝑘𝑛 

are of opposite sign, reptends and transients 

will be complementary with digits adding 

up to 9 (base - 1). 

Ex: 183/700 = 0.26142857̅̅ ̅̅ ̅̅ ̅̅ ̅̅ → (183 − 5 ⋅ 700)/700 = −4.73857142̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). 

It’s always a good idea when dealing with a problem to strip away everything 

that doesn’t matter and concentrate on what remains. In our case this means 

to partition the integers into classes based on the equivalence relation 𝑎~𝑏 

whenever 𝑎 − 𝑏 is a multiple of 𝑛. The notation for this is 𝑎 ≡ 𝑏 (mod 𝑛) 

where 𝑎 and 𝑏 are said to be congruent modulo 𝑛. The congruence classes are 

[0], [1], … , [𝑛 − 1] where [𝑖] corresponds to {𝑖 + 𝑘𝑛|𝑘 ∈ ℤ} and [𝑚] is 

represented by its rest upon division: 𝑚 = 𝑘𝑛 + 𝑟.  The congruence classes 

form a set denoted by ℤ/𝑛ℤ or ℤ/𝑛. 

Carl Friedrich Gauss introduced congruence classes and their arithmetic in 

“Disquisitiones Arithmeticae” from 1801. The arithmetical properties are as 

follows: (Check it!) 

If 𝑎1 ≡ 𝑏1 (mod 𝑛), 𝑎2 ≡ 𝑏2 (mod 𝑛) and 𝑎 ≡ 𝑏 (mod 𝑛) then: 

𝑎 + 𝑘 = 𝑏 + 𝑘 (mod 𝑛) , 𝑘 ∈ ℤ Compatibility with translation 

𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑛) , 𝑘 ∈ ℤ  scaling 

𝑎1 + 𝑎2 ≡ 𝑏1 + 𝑏2 (mod 𝑛)  addition 

𝑎1 − 𝑎2 ≡ 𝑏1 − 𝑏2 (mod 𝑛)  subtraction 

𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛)  exponentiation 

𝑝(𝑎) ≡ 𝑝(𝑏) (mod 𝑛) , 𝑝(𝑥) ∈ ℤ[𝑋]  polynomials 

 

For cancellation the following apply: 

𝑎 + 𝑘 ≡ 𝑏 + 𝑘 (mod 𝑛)  , 𝑘 ∈ ℤ   ⇒ 𝑎 ≡ 𝑏 (mod 𝑛) 

𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑛) and (𝑘, 𝑛) = 1 ⇒ 𝑎 ≡ 𝑏 (mod 𝑛) 
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A big difference between modular arithmetic and integer arithmetic is the 

existence of multiplicative inverses. 

𝑎𝑥 ≡ 1 (mod 𝑛) has a unique solution (mod 𝑛) whenever (𝑎, 𝑛) = 1. 

The solution denoted by 𝑎−1 is called modular multiplicative inverse. 

𝑎𝑥 ≡ 𝑏 (mod 𝑛) is solved by 𝑥 = 𝑎−1𝑏 (mod 𝑛) whenever gcd(𝑎, 𝑛) = 1. 

From now on gcd(𝑎, 𝑏) (Greatest Common Divisor) will be used instead of 

(𝑎, 𝑏) to be consistent with lcm(a, b) used for Least Common Multiple. 

Every member of ℤ/𝑝ℤ with prime modulus has an inverse which makes 

ℤ/𝑝ℤ a field (p. 97). The number of elements in ℤ/𝑛ℤ with multiplicative 

inverse is given by Euler’s totient function 𝜑(𝑛) which counts the number of 

positive integers coprime with 𝑛. 𝜑(𝑝) = 𝑝-1 when 𝑝 is a prime number and 

𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛) whenever gcd(𝑚, 𝑛) = 1. 

 

 

 

 

 

 

 

 

 

Fig 4.2  Euler’s totient function 𝜑(𝑛) 

Theorem. (Fermat’s little theorem) 

If 𝑝 is a prime number: 𝑎𝑝 ≡ 𝑎 (mod 𝑝) 

If 𝑎 ≢ 0 (mod 𝑛):  𝑎𝑝−1 ≡ 1 (mod 𝑝) 

Proof. 

Assume 𝑎 ≠ 0 and 𝑝 ∤ 𝑎: 

[𝑎], [2𝑎], … , [(𝑝 − 1)𝑎] is a permutation of  [0], [1], … , [𝑝 − 1], 

if not there would be a factor 𝑝 in 𝑛𝑎 with 0 < |𝑛| < 𝑝 and 𝑝 ∤ 𝑎. 

Their products must be identical modulo 𝑝: 

 

∏𝑘𝑎

𝑝−1

𝑘=1

≡∏𝑘

𝑝−1

𝑘=1

(mod 𝑝) ⇒ 𝑎𝑝−1 ≡ 1 (mod 𝑝) ⇒ 𝑎𝑝 ≡ 𝑎 (mod 𝑝) 

 

If 𝑎 ≡ 0 (mod 𝑝) then 𝑎𝑝 ≡ 𝑎 ≡ 0 (mod 𝑝). ∎ 

𝜑(𝑛) 

𝑛 
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Modular arithmetic has many applications not only problem solving in school 

mathematics. It’s used in number theory, abstract algebra, computer science, 

cryptography and many other branches of science. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the expansion in base 𝑏 of 𝑚/𝑛 with 0 < 𝑚 < 𝑛 and gcd(𝑚, 𝑛) = 1 

with no transient, 𝑚/𝑛 = (0. 𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅ )𝑏 it is quite obvious that the period of 

𝑚/𝑛 is given by the smallest number 𝑘 s.t.: 

𝑏𝑘
𝑚

𝑛
−
𝑚

𝑛⏟      
𝑟1…𝑟𝑘

∈ ℤ ⟺ 𝑏𝑘𝑚 ≡ 𝑚 (mod 𝑛) ⇔ 𝑏𝑘 ≡ 1 (mod 𝑛) 

This is the multiplicative order of 𝑏 modulo 𝑛. gcd(𝑏, 𝑛) = 1 is assumed, this 

guarantees no transient. When there is a transient 𝑚/𝑛 = (0. 𝑦1. . . 𝑦𝑗𝑟1. . . 𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅ )
𝑏
 

the transient length 𝑗 and period 𝑘 are given by the lowest pair (𝑗, 𝑘) in 

lexicographic order s.t.: 

𝑏𝑘+𝑗
𝑚

𝑛
− 𝑏𝑗

𝑚

𝑛⏟        
𝑦1…𝑦𝑗𝑟1…𝑟𝑘

∈ ℤ ⟺ 𝑏𝑘+𝑗 ≡ 𝑏𝑗 (mod 𝑛) 

The period of a fraction 𝑚/𝑛 with no transient is most effectively calculated 

in Mathematica with the command MultiplicativeOrder[b,n]. This 

is much more efficient than the general procedure RealDigits[m/n,b] 

that gives {𝑎1, … , 𝑎𝑖 , 𝑏1, … , 𝑏𝑗 , {𝑟1, … , 𝑟𝑘}, 𝑖}, with the period 𝑘 given by the 

call Length[RealDigits[m/n,b][[1,-1]]]. 

It remains to be seen whether the periods of 1/𝑛 and 𝑚/𝑛 are always equal. 

The Rivest-Shamir-Adleman cryptosystem 

The RSA cryptosystem for encoding and decoding messages is based on 

choosing two large prime numbers 𝑝, 𝑞 and computing the product 𝑛 = 𝑝𝑞 

and 𝑘 = 𝜑(𝑛) = 𝜑(𝑝)𝜑(𝑞). Two numbers 𝑒, 𝑑 with 𝑒𝑑 ≡ 1 (mod 𝑘) are 

used for encoding and decoding. 𝑛 and the encryption key 𝑒 are public 

while the decryption key 𝑑 is private. A secret message represented by an 

integer 𝑚 (0 < 𝑚 < 𝑛) is encrypted by computing 𝑆 = 𝑚𝑒  (mod 𝑛) and 

decrypted by computing 𝑀 = 𝑆𝑑 (mod 𝑛). Euler’s theorem gives 𝑀 = 𝑚. 

The RSA encryption would be useless if there was an easy method to 

factor 𝑛 or if 𝜑(𝑛) could be easily computed without factoring 𝑛. 
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To find out let’s start by looking for counterexamples. This takes some 

programming but in order to take advantage of the commands available in 

Mathematica a good way would be to do the programming in Mathematica 

code. Debugging and code editing can be done in the Eclipse based IDE with 

a plug-in for the Mathematica language. Other plug-ins are available for other 

program languages such as C/C++, Java or Python. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Running the program with countExceptions[nMax,bMax] gives no sign of 

exceptions because there are no exceptions.  

Theorem. 

The period of 𝑚/𝑛 equals the period of 1/𝑛.  ( if  gcd(𝑚, 𝑛) = 1 ) 

Proof. 

The proof will be illustrated with concrete examples. A general proof will 

follow from the same principles as shown in the examples. 

The remainder 𝑟 when dividing 𝑎 by 𝑛, 𝑎 = 𝑘𝑛 + 𝑟 with 0 ≤ 𝑟 < 𝑛 will be 

𝑅𝑛(𝑎) ≡ 𝑟 = 𝑎 − ⌊𝑎/𝑛⌋ ⋅ 𝑛 (it works for 𝑎 < 0 as well). 

In terms of congruence classes modulo 𝑛, [𝑎] = [𝑅𝑛(𝑎)].

countExceptions[nMax_,bMax_]:= 

 Module[{countExc=0,countAll=0,periodOne,periodM}, 

  Do[       (* {b,2,bMax} *)

   Do[      (* {n,2,nMax} *) 

    periodOne=Length[RealDigits[1/n,b][[1,-1]]]; 

    If[periodOne>0, (* ? 1/n repeat *) 

     Do[    (* {m,2,n-1} *) 

      If[ GCD[m,n]==1, 

       periodM= Length[RealDigits[m/n,b][[1,-1]]]; 

       countAll=countAll+1; 

       If[!(periodM==periodOne),countExc=countExc+1]; 

       ],   (* end If gcd=1 *) 

      {m,2,n-1}  

      ]     (* end Do m *) 

     ],     (* end If p1>0 *) 

    {n,2,nMax}  

    ],      (* end Do n *) 

   {b,2,bMax} 

   ];       (* end Do b *) 

  countExceptions=count; 

  Print[“Out of “<>ToString[countAll]<>” cases examined, ” 

       “the number of exceptions is “<>ToString[countExc]] 

  ]         (* end Module *) 
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1/𝑛 = 0. 𝑦1 …𝑦𝑗𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅     ( Assume base 10 ) 

The number of fractions 𝑚/𝑛 with 1 ≤ 𝑚 < 𝑛 and gcd(𝑚, 𝑛) = 1 is 𝜙(𝑛). 

Collect them in the set Φ𝑛 = {𝑘|1 ≤ 𝑘 < 𝑛 and gcd(𝑘, 𝑛) = 1}. 

Ex.: Φ10 = {1,3,7}, Φ13 = {1,2,3, … ,12} 

Case 1. 1/𝑛 has no transient, i.e. gcd(𝑛, 10) = 1 and 𝑛−1 = 0. 𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅  

Ex.: 1/13 = 0. 076923̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  𝑇13 = 6 is the smallest 𝑥 ∈ ℤ+:10𝑥 ≡ 1 (mod 13) 

With a convention of reptend always coming after the radix point 10𝑘/𝑛 will 

have a cyclically permuted reptend shifted 𝑘 steps to the right and returning 

to the original reptend after 𝑇𝑛 steps. The numerators 10𝑘 will correspond to 

𝑇𝑛 different numerators 𝑆1 = (𝑅𝑛(𝑚110
𝑘))𝑘=0

𝑇𝑛−1. 

Ex.: 𝑛 = 13, (𝑚1 = 1,10,10
2, 103, … ) ↷ 𝑆1 = (1,10,9,12,3,4,1,10,9, …) 

If not different then 10𝑎 ≡ 10𝑏 (mod 𝑛) and since gcd(10, 𝑛) = 1 we get 

10|𝑏−𝑎| ≡ 1 (mod 𝑛) and with 0 < |𝑏 − 𝑎| < 𝑇𝑛 this is a contradiction. 

Take the next number in Φ𝑛 not in 𝑆1 and start a new sequence. 

Ex.  𝑚2 = 2    2/13 = 0. 153846̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (𝑚2 ⋅ 10
𝑘)𝑘=1
∞ ↷ 𝑆2 = (2,7,5,11,6,8) 

𝑆2 will also contain 𝑇𝑛 different element before starting to repeat and 

each corresponding fraction will have the same period as 1/𝑛 since: 

𝑚2 ⋅ 10
𝑎 ≡ 𝑚2 ⋅ 10

𝑏 (mod 𝑛) ⟺
gcd(𝑚2,𝑛)=1

gcd(𝑛,10)=1

10|𝑏−𝑎| ≡ 1 (mod 𝑛) 

𝑚2 ∉ 𝑆1 guarantees that 𝑆1 ∩ 𝑆2 = ∅ since, the opposite means that 

∃𝑎, 𝑏:𝑚110
𝑎 ≡ 𝑚210

𝑏 ⇒ 𝑚110
𝑎+1 ≡ 𝑚210

𝑏+1 → 𝑚2 ∈ 𝑆1 (contradiction) 

Take the next number in Φ𝑛 not belonging to 𝑆1⋃𝑆2 and repeat the process. 

Eventually all numerators in Φ𝑛 will be accounted for, all with period 𝑇𝑛. 

The fractions 𝑚/𝑛 can be divided into 𝜑(𝑛)/𝑇𝑛 groups with 𝑇𝑛 members 

with reptends equal to 𝑇𝑛 cyclical permutations. 

Ex. 𝑛 = 13, 𝜑(13) = 12, 𝑇13 = 6 
1

13
=. 076923̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

10

13
=. 769230̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

9

13
=. 692307̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

12

13
=. 923076̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

3

13
=. 230769̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

4

13
=. 307692̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

2

13
=. 153846̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

7

13
=. 538461̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

5

13
=. 384615̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

11

13
=. 846153̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

6

13
=. 461538̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

8

13
=. 615384̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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Case 2. 1/𝑛 has a transient, i.e. gcd(𝑛, 10) ≠ 1 and 𝑛−1 = 0. 𝑦1. . 𝑦𝑗𝑟1…𝑟𝑘̅̅ ̅̅ ̅̅ ̅̅  

Ex. 𝑛 = 260 = 22 ⋅ 5 ⋅ 13 
1

𝑛
= .00384615̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝜑(260) = 𝜑(22)𝜑(5)𝜑(13) = 96 𝑇260 = 6 

Let the number of digits in the transient of 1/𝑛 be 𝑈𝑛. 

Start with 𝑚1 = 1 and look at 10𝑘 ⋅ (𝑚1/𝑛) corresponding to numerators 

𝑅𝑛(𝑚1 ⋅ 10
𝑘). After 𝑈𝑛 steps the reptend will reach the position after the 

radix point and then comes cycles with 𝑇𝑛 steps: 10𝑈𝑛+𝑇𝑛 ≡ 10𝑈𝑛  (mod 𝑛). 

Each fraction 10𝑘/𝑛 has the period 𝑇𝑛, same as 1/𝑛. Form 𝑆1 as before. 

Ex: 𝑛 = 260    𝑆1 = (1,10,100,220,120,160,40,110,   )  All numerators with period 𝑇𝑛. 

The numerators 𝑅𝑛(𝑚1 ⋅ 10
𝑘) in the circular part are all different, if not: 

𝑚110
𝑈𝑛10𝑎 ≡ 𝑚110

𝑈𝑛10𝑏  (mod 𝑛)
0 ≤ 𝑎 < 𝑏 < 𝑇𝑛

 ⟺
10𝑈𝑛+𝑎 ≡ 10𝑈𝑛+𝑏 ≡ 10𝑈𝑛+𝑎+(𝑏−𝑎) (mod 𝑛)
Transient length:𝑈𝑛 + 𝑎 
Period 𝑏 − 𝑎, 0 < 𝑏 − 𝑎 < 𝑇𝑛  contradiction

 

Take the next number 𝑚2 in Φ𝑛 not in 𝑆1 and start a new sequence, 𝑆2. 

10𝑈𝑛+𝑇𝑛 ≡ 10𝑈𝑛  (mod 𝑛) ⇒ 𝑚2 ⋅ 10
𝑈𝑛+𝑇𝑛 ≡ 𝑚2 ⋅ 10

𝑈𝑛  (mod 𝑛) ⇒
All numerators in S2 
have the period 𝑇𝑛

 

As before, the numerators in the circular part will be different. 

Ex: 𝑛 = 260  𝑚2 = 3   𝑆2 = (3,30,40,140,100,220,120,160,   )  

  𝑚3 = 7  𝑆3 = (7, 70, 180, 240, 60, 80, 20, 200,   ) 

Take the next number in Φ𝑛 not belonging to 𝑆1⋃𝑆2 and repeat the process. 

Eventually all numerators in Φ𝑛 will be accounted for, all with period 𝑇𝑛. ∎ 

As a corollary we get that the period of 1/𝑛 is unaffected by any prime 

factors from the base. Let 𝑛 = 𝑛′𝑏′ with all prime factors from the base in 𝑏′ 

and the rest in 𝑛′. Extend to get a base power in the denominator: 

1

𝑛′𝑏′
=

𝑏′′

𝑛′𝑏𝑘
~
𝑏′′

𝑛′
 ( gcd(𝑏′′, 𝑛) = 1 ) ~

1

𝑛′
    ( ~ meaning same period as )  

4.4 Period and Prime Powers 

To understand the period of any fraction we now only need to understand the 

period of 1/𝑛, with no factors from the base in 𝑛. We know 𝑇𝑛(𝑏) < 𝑛 − 1 

and from the big size of a few examples, the remainders in the long division 

can hardly be random. A reasonable way forward is to look for a rule such as 

𝑇𝛼𝛽 = 𝑓(𝑇𝛼 , 𝑇𝛽) whenever 𝛼 and 𝛽 are coprime. 
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Theorem. 

If 𝛼 and 𝛽 are coprime with no factors from the base then 𝑇𝛼𝛽 = lcm(𝑇𝛼 , 𝑇𝛽) 

(All periods are taken in base 𝑏) 

Proof. 

𝑇𝑛 = min {𝑥 ∈ ℤ
+|𝑏𝑥 ≡ 1 (mod 𝑛)}⏟                

𝑆𝑛

 with 𝑛 = 𝛼, 𝛽 or 𝛼𝛽 

𝑏𝑇𝛼 ≡ 1 (mod 𝛼) 𝑏𝑇𝛽 ≡ 1 (mod 𝛽) 𝑏𝑇𝛼𝛽 ≡ 1 (mod 𝛼𝛽) 

 

Show I. lcm(𝑇𝛼 , 𝑇𝛽) ∈ 𝑆𝛼𝛽 

 II. 𝑥 ∈ 𝑆𝛼𝛽 i.e. 𝑏𝑥 ≡ 1 (mod 𝛼𝛽) ⇒ 𝑥 ≥ lcm(𝑇𝛼 , 𝑇𝛽) 

I. 

For every common multiple 𝑦 of 𝑇𝛼 and 𝑇𝛽: 

𝑦 = 𝑘𝛼𝑇𝛼 ∧ 𝑏
𝑇𝛼 ≡ 1 (mod 𝛼) ⇒ 𝑏𝑦 − 1 ≡ (𝑏𝑇𝛼)𝑘𝛼 − 1 ≡ 0 (mod 𝛼) 

𝑦 = 𝑘𝛽𝑇𝛽 ∧ 𝑏
𝑇𝛽 ≡ 1 (mod 𝛽) ⇒ 𝑏𝑦 − 1 ≡ (𝑏𝑇𝛽)

𝑘𝛽 − 1 ≡ 0 (mod 𝛽) 

 

𝑏𝑦 − 1 = 𝑘1𝛼
𝑏𝑦 − 1 = 𝑘2𝛽

⇒ 𝑏𝑦 − 1 = 𝑘3𝛼𝛽 ⇒ 𝑦 ∈ 𝑆𝛼𝛽 ⇒ lcm(𝑇𝛼 , 𝑇𝛽) ∈ 𝑆𝛼𝛽 

II. 

𝑏𝑥 − 1 = 𝑘𝛼𝛽 ⇒
𝑏𝑥 − 1 = 𝑘1𝛼 ⇒ 𝑥 multiple of 𝑇𝛼 
𝑏𝑥 − 1 = 𝑘2𝛽 ⇒ 𝑥 multiple of 𝑇𝛽

⇒ 𝑥 ≥ lcm(𝑇𝛼 , 𝑇𝛽) 

∴  lcm(𝑇𝑎, 𝑇𝑏) is the least element in 𝑆𝛼𝛽 so lcm(𝑇𝛼 , 𝑇𝛽) = 𝑇𝛼𝛽 ∎ 

Corollary. 

If the prime factorization of 𝑛 is 𝑝1
𝑘1𝑝2

𝑘2 …𝑝𝑁
𝑘𝑁 then: 

𝑇𝑛 = lcm(𝑇𝑝1
𝑘1 , 𝑇𝑝2𝑘2 , … , 𝑇𝑝𝑁

𝑘𝑁)   
All periods taken in base 𝑏 and
𝑇
𝑏
𝑖

𝑘𝑖 = 1 for prime powers of the base.
 

The period function 𝑓𝑏(𝑛) ≡ 𝑇𝑛(𝑏) is not the only function with the property 

𝑓(𝑝1
𝛼1𝑝2

𝛼2 …𝑝𝑁
𝛼𝑁) = lcm(𝑓(𝑝1

𝛼1), 𝑓(𝑝2
𝛼2), … , 𝑓(𝑝𝑁

𝛼𝑁)). The totient function 

of Euler has a close relative called the Carmichael function a.k.a. the reduced 

totient function with the same property. 

Definition. (the Carmichael function) 

𝜆(𝑛) ≡ min{𝑚 ∈ ℤ+|𝑏𝑚 ≡ 1 (mod 𝑛) for every 𝑏 coprime to 𝑛}
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Think of 𝑏 in the definition as a base, we are only interested in bases coprime 

to 𝑛 when considering the period of 1/𝑛. 𝑏𝑚 ≡ 𝑅𝑛(𝑏)
𝑚 (mod 𝑛) so we need 

only look at bases in Φn, the set from Euler’s totient function. 

To best understand 𝜆(𝑛), some group and ring theory is needed. ℤ/𝑛ℤ is a 

ring, a group under addition but under multiplication only elements coprime 

to 𝑛 have inverses. For prime numbers, every element has a multiplicative 

inverse, ℤ/𝑝ℤ is a field. The elements of ℤ/𝑛ℤ with multiplicative inverse 

form the multiplicative group modulo 𝑛, ((ℤ/𝑛ℤ)∗,⋅). The set (ℤ/𝑛ℤ)∗ is the 

same as Φ𝑛 with |Φ𝑛| = 𝜑(𝑛) members. 

Example. 

𝑛 = 15 Φ15 = {1,2,4,7,8,11,13,14}  𝜑(15) = 8 

𝑏 condition on 𝑚 𝑚 order of 𝑏 period of 1/15 

1 1𝑚 ≡ 1 (mod 15) 𝑘 1 1 in bases ≡ 1 (mod 15) 

2 2𝑚 ≡ 1 (mod 15) 4𝑘 4 4 in bases ≡ 2 (mod 15) 

4 4𝑚 ≡ 1 (mod 15) 2𝑘 2 2 in bases ≡ 4 (mod 15) 

⋮ ⋮ ⋮ ⋮ ⋮ 

14 14𝑚 ≡ 1 (mod 15) 2𝑘 2 2 in bases ≡ 14 (mod 15) 

 

𝜆(𝑛) is the least 𝑚 belonging to all rows →  𝜆(𝑛) = lcm{ord(𝑏)|𝑏 ∈ Φ𝑛} 

By group theory the order of any element in the group divides the cardinality 

of the group which is 𝜑(𝑛) so 𝜆(𝑛)|𝜑(𝑛) → 𝑇𝑛(𝑏)|𝜆(𝑛)|𝜑(𝑛) ≤ 𝑛 − 1. 

∴ The period of 1/𝑛 in base 𝑏 is a divisor of 𝜆(𝑛) which is a divisor of 𝜑(𝑛) 

which is smaller than 𝑛 and maximal when 𝑛 is prime, 𝜑(𝑝) = 𝑝 − 1. 

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

𝜑(𝑛) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 

𝜆(𝑛) 1 1 2 2 4 2 6 2 6 4 10 2 12 6 4 4 16 6 18 4 6 

𝑇𝑛(2) - - 2 - 4 2 3 - 6 4 10 2 12 3 4 - 8 6 18 4 6 

𝑇𝑛(3) - 1 - 2 4 1 6 2 - 4 5 2 3 6 4 4 16 1 18 4 6 

𝑇𝑛(7) - 1 1 2 4 1 - 2 3 4 10 2 12 1 4 2 16 3 3 4 1 

𝑇𝑛(10) - - 1 - - 1 6 - 1 - 2 1 6 6 1 - 16 1 18 - 6 

𝑇𝑛(16) - - 1 - 1 1 3 - 3 1 5 1 3 3 1 - 2 3 9 1 3 

Fig. 4.3  Euler’s function 𝜑, Carmichael’s function 𝜆 and some comparison periods. 

From now on focus will be on 𝑇𝑝𝑘(𝑏), period of prime powers for different 

bases. On the next page are tables for such periods. The first pattern to notice 

is that 𝑇𝑝(𝑏)|(𝑝 − 1). We will return to the factor 𝑘 = (𝑝 − 1)/𝑇𝑝(𝑏) at the 

end of the chapter. A second pattern seems to be that 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1, 

but this rule is not without exceptions. 
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Base 2: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 0 2 4 3 10 12 8 18 11 28 

k=2 0 2 ⋅ 31 4 ⋅ 51 3 ⋅ 71 10 ⋅ 111 12 ⋅ 131 8 ⋅ 171 18 ⋅ 191 11 ⋅ 231 28 ⋅ 291 

k=3 0 2 ⋅ 32 4 ⋅ 52 3 ⋅ 72 10 ⋅ 112 12 ⋅ 132 8 ⋅ 172 18 ⋅ 192 11 ⋅ 232 28 ⋅ 292 

k=4 0 2 ⋅ 33 4 ⋅ 53 3 ⋅ 73 10 ⋅ 113 12 ⋅ 133 8 ⋅ 173 18 ⋅ 193 11 ⋅ 233 28 ⋅ 293 

Base 3: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 1 0 4 6 5 3 16 18 11 28 

k=2 2 0 4 ⋅ 51 6 ⋅ 71 5 3 ⋅ 131 16 ⋅ 171 18 ⋅ 191 11 ⋅ 231 28 ⋅ 291 

k=3 2 0 4 ⋅ 52 6 ⋅ 72 5 ⋅ 111 3 ⋅ 132 16 ⋅ 172 18 ⋅ 192 11 ⋅ 232 28 ⋅ 292 

k=4 4 0 4 ⋅ 53 6 ⋅ 73 5 ⋅ 112 3 ⋅ 133 16 ⋅ 173 18 ⋅ 193 11 ⋅ 233 28 ⋅ 293 

Base 4: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 0 1 2 3 5 6 4 9 11 14 

k=2 0 31 2 ⋅ 51 3 ⋅ 71 5 ⋅ 111 6 ⋅ 131 4 ⋅ 171 9 ⋅ 191 11 ⋅ 231 14 ⋅ 291 

k=3 0 32 2 ⋅ 52 3 ⋅ 72 5 ⋅ 112 6 ⋅ 132 4 ⋅ 172 9 ⋅ 192 11 ⋅ 232 14 ⋅ 292 

k=4 0 33 2 ⋅ 53 3 ⋅ 73 5 ⋅ 113 6 ⋅ 133 4 ⋅ 173 9 ⋅ 193 11 ⋅ 233 14 ⋅ 293 

Base 5: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 1 2 0 6 5 4 16 9 22 14 

k=2 1 2 ⋅ 31 0 6 ⋅ 71 5 ⋅ 111 4 ⋅ 131 16 ⋅ 171 9 ⋅ 191 22 ⋅ 231 14 ⋅ 291 

k=3 2 2 ⋅ 32 0 6 ⋅ 72 5 ⋅ 112 4 ⋅ 132 16 ⋅ 172 9 ⋅ 192 22 ⋅ 232 14 ⋅ 292 

k=4 4 2 ⋅ 33 0 6 ⋅ 73 5 ⋅ 113 4 ⋅ 133 16 ⋅ 173 9 ⋅ 193 22 ⋅ 233 14 ⋅ 293 

Base 6: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 0 0 1 2 10 12 16 9 11 14 

k=2 0 0 51 2 ⋅ 71 10 ⋅ 111 12 ⋅ 131 16 ⋅ 171 9 ⋅ 191 11 ⋅ 231 14 ⋅ 291 

k=3 0 0 52 2 ⋅ 72 10 ⋅ 112 12 ⋅ 132 16 ⋅ 172 9 ⋅ 192 11 ⋅ 232 14 ⋅ 292 

k=4 0 0 53 2 ⋅ 73 10 ⋅ 113 12 ⋅ 133 16 ⋅ 173 9 ⋅ 193 11 ⋅ 233 14 ⋅ 293 

Base 7: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 1 1 4 0 10 12 16 3 22 7 

k=2 2 31 4 0 10 ⋅ 111 12 ⋅ 131 16 ⋅ 171 3 ⋅ 191 22 ⋅ 231 7 ⋅ 291 

k=3 2 32 4 ⋅ 51 0 10 ⋅ 112 12 ⋅ 132 16 ⋅ 172 3 ⋅ 192 22 ⋅ 232 7 ⋅ 292 

k=4 2 33 4 ⋅ 52 0 10 ⋅ 113 12 ⋅ 133 16 ⋅ 173 3 ⋅ 193 22 ⋅ 233 7 ⋅ 293 

Base 8: 
 p: 2 3 5 7 11 13 17 19 23 29  

k=1 0 2 4 1 10 4 8 6 11 28 

k=2 0 2 4 ⋅ 51 71 10 ⋅ 111 4 ⋅ 131 8 ⋅ 171 6 ⋅ 191 11 ⋅ 231 28 ⋅ 291 

k=3 0 2 ⋅ 31 4 ⋅ 52 72 10 ⋅ 112 4 ⋅ 132 8 ⋅ 172 6 ⋅ 192 11 ⋅ 232 28 ⋅ 292 

k=4 0 2 ⋅ 32 4 ⋅ 53 73 10 ⋅ 113 4 ⋅ 133 8 ⋅ 173 6 ⋅ 193 11 ⋅ 233 28 ⋅ 293 
 

Fig. 4.4  𝑇𝑝𝑘(𝑏) for the first 10 primes, 𝑘=1 to 4 in base 2 to 8. 

Exceptions to the rule 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1 are marked with colors. 
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4.5 Exceptional Cases 

Four cases deserve special study, the rest follows 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1: 

• Green: 𝑝 is a factor of 𝑏 then 1/𝑝𝑘 is a terminating number. 

• Blue: 𝑝 = 2 and the base 𝑏 is an odd number. 

• Orange: 𝑝 is a factor of 𝑏 − 1, 𝑇𝑝(𝑏) = 1. 

• Red: Special cases, not covered by the any of the above. 

The first case we have already proved. The second case is 𝑇2𝑘(𝑏) with odd 𝑏: 

𝑇2𝑘(𝑏) 
𝑘
→ 

1 2 3 4 5 6 7 8 9 10   

𝑏 
↓ 

𝑁 
↓ 

1

2
 
1

4
 
1

8
 

1

16
 

1

32
 

1

64
 

1

128
 

1

256
 

1

512
 

1

1024
 

# 
1’s 

# 
2’s 

3 1 1 2 2 4 8 16 32 64 128 256 1 2 

5 2 1 1 2 4 8 16 32 64 128 256 2 1 

7 1 1 2 2 2 4 8 16 32 64 128 1 3 

9 3 1 1 1 2 4 8 16 32 64 128 3 1 

11 1 1 2 2 4 8 16 32 64 128 256 1 2 

13 2 1 1 2 4 8 16 32 64 128 256 2 1 

15 1 1 2 2 2 2 4 8 16 32 64 1 4 

17 4 1 1 1 1 2 4 8 16 32 64 4 1 

19 1 1 2 2 4 8 16 32 64 128 256 1 2 

21 2 1 1 2 4 8 16 32 64 128 256 2 1 

23 1 1 2 2 2 4 8 16 32 64 128 1 3 

25 3 1 1 1 2 4 8 16 32 54 128 3 1 

27 1 1 2 2 4 8 16 32 64 128 256 1 2 

29 2 1 1 2 4 8 16 32 64 128 256 2 1 

31 1 1 2 2 2 2 2 4 8 16 32 1 5 

33 5 1 1 1 1 1 2 4 8 16 32 5 1 

35 1 1 2 2 4 8 16 32 64 128 256 1 2 

37 2 1 1 2 4 8 16 32 64 128 256 2 1 

39 1 1 2 2 2 4 8 16 32 64 128 1 3 

41 3 1 1 1 2 4 8 16 32 64 128 3 1 

43 1 1 2 2 4 8 16 32 64 128 256 1 2 

45 2 1 1 2 4 8 16 32 64 128 256 2 1 

47 1 1 2 2 2 2 4 8 16 32 64 1 4 

49 4 1 1 1 1 2 4 8 16 32 64 4 1 

51 1 1 2 2 4 8 16 32 64 128 256 1 2 

53 2 1 1 2 4 8 16 32 64 128 256 2 1 

55 1 1 2 2 2 4 8 16 32 64 128 1 3 

57 3 1 1 1 2 4 8 16 32 64 128 3 1 

59 1 1 2 2 4 8 16 32 64 128 256 1 2 

61 2 1 1 2 4 8 16 32 64 128 256 2 1 

63 1 1 2 2 2 2 2 2 4 8 16 1 6 

Fig. 4.5  Table of MatrixForm[Table[MultiplicativeOrder[b,2k],{b,3,63,2},{k,1,10}]].
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The number of 1’s and 2’s in each row seems to follow a pattern: 

#1’s  base: 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

#2’s base:  3 5 7 9 11 13 15 17 19 21 23 25 27 29 

 1  1  1  1  1  1  1  1 

  2    2    2    2  

                

    3        3    

                

                

                

        4        

Base: 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

#1𝑠 = 𝑥 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

#2𝑠 = 𝑦 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 

 

Theorem. (Blue cases) 

Each sequence (𝑇2𝑘(𝑏))𝑘=1
∞  with an odd numbered base starts with 𝑥 1’s 

followed by 𝑦 2’s followed by a geometric sequence (4 ⋅ 2𝑘)𝑘=0
∞ .  

If the base is written as 𝑏 = 𝛼 ⋅ 2𝑁 + 1 with 𝛼 ∈ 2ℤ + 1 then 𝑥 = 𝑁 and 

𝑦 is shifted one step, if 𝑏 =  𝛼 ⋅ 2𝑀 − 1 then 𝑦 = 𝑀. 

Proof. 

1’s: For each 𝑏-sequence (𝑇2𝑘(𝑏))𝑘=1
∞

 , 𝑇2𝑘(𝑏) = 1 ⇔ 𝑏 ≡ 1 (mod 2𝑘) 

𝛼 ⋅ 2𝑁 + 1 ≡ 1 (mod 2𝑘) ⇔ 𝑁 ≥ 𝑘 ⟺ Each sequence start with 𝑁 1’s. 

 

2’s: 𝑇2𝑘(𝑏) ≤ 2 ⇔ 𝑏2 ≡ 1 (mod 2𝑘) ⇔ (𝑏 + 1)(𝑏 − 1) ≡ 0 (mod 2𝑘) 

Add the powers of 2 in (𝑏 + 1) and (𝑏 − 1): 

Base 𝑏: 3 5 7 9 11 13 15 17 19 21 23 25 … 

𝑏 − 1 = 𝛼 ⋅ 2𝑁 → 𝑁: 1 2 1 3 1  2  1  4  1  2  1  3  … 

𝑏 + 1 = 𝛼 ⋅ 2𝑀 → 𝑀: 2 1 3 1 2  1  4  1  2  1  3  1  … 

Blue + Green, 𝑀 +𝑁:  3   4    3     5     3     4   … 

 

Number of 2’s 𝑦 = (𝑁 +𝑀) (𝑓𝑜𝑟 𝑇 ≤ 2) − 𝑁 (𝑓𝑜𝑟 𝑇 = 1) = 𝑀 

𝑀 is the same pattern as N but shifted one step. 
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Geometric sequence: 

𝑇2𝑛(𝑏)|𝜑(2
𝑛) ∧ 𝜑(2𝑛) = 2𝑛−1 ⇒ 𝑇2𝑛(𝑏) ∈ {2

𝑘|𝑘 = 1,2, … , 𝑛 − 1} 

 

𝑏2 ≡ 1 (mod 2𝑘) ⇒ 𝑏4 ≡ 1(mod 2𝑘+1 ) since 

(𝑏 + 1)(𝑏 − 1) ≡ 0 (mod 2𝑘)  ⇒ 

(𝑏4 − 1) = (𝑏2 + 1)⏟    
𝛼1⋅2

(𝑏2 − 1)⏟    
𝛼2⋅2

𝑘

≡ 0 (mod 2k+1)     [𝛼1, 𝛼2 ∈ 2ℤ + 1] 

∴ 𝑇2𝑘(𝑏) ≤ 2 ⇒ 𝑇2𝑘+1(𝑏) ≤ 4 →  after the 2′𝑠 in (𝑇2𝑘(𝑏))𝑘=1
∞

 comes a 4. 

 

Assume  𝑇2𝐾+2(𝑏) = 4        [  𝑏
4 ≡ 1 (mod 2𝐾+2) and 𝑏2 ≢ 1 (mod 2𝐾+2)  ] 

 𝑇2𝐾+𝑛(𝑏) = 2
𝑛      [ 𝑏2

𝑛
≡ 1 (mod 2𝐾+𝑛)  ] 

 

Show 𝑇2𝐾+𝑛+1(𝑏) = 2
𝑛+1 

𝑏2
𝑛+1

= (𝑏2
𝑛
)
2
= (𝛼 ⋅ 2𝐾+𝑛 + 1)2 ≡ 1 (mod 2K+n+1)    [𝛼, 𝛼𝑖 ∈ 2ℤ + 1]. 

 

Show 𝑏2
𝑛
≢ 1 (mod 2𝐾+𝑛+1 )                       𝛼𝑖 ∈ 2ℤ + 1 

𝑏2
𝑛
− 1 = (𝑏2

𝑛−1
+ 1)⏟      

2𝛼𝑛−1

(𝑏2
𝑛−2

+ 1)⏟      
2𝛼𝑛−2

⋅ … ⋅ (𝑏2
2
+ 1)⏟      

2𝛼2

(𝑏4 − 1)⏟    
𝛼02

𝐾+2

 

= 𝛼2𝐾+𝑛 →    𝑏2
𝑛
≡ 1 (mod 2𝐾+𝑛 ) and  𝑏2

𝑛
≢ 1 (mod 2𝐾+𝑛+1 ) 

 

∴ 𝑇2𝐾+𝑛(𝑏) = 2
𝐾+𝑛  for 𝑛 = 1,2, …  

Once the sequence of 2’s stop follows a geometric sequence 4, 8, 16, … ∎ 

The third exceptional case is marked by orange in the table of fig. 4.4. It 

consists of powers of odd primes that are factors of base−1. The periods of 

even prime powers 𝑇2𝑘(𝑏) is already covered in the second exception. The 

“orange” sequences (𝑇𝑝𝑘(𝑏))𝑘=1
∞  all start with 𝑇𝑝(𝑏) = 1, we could call them 

odd period one primes. The table should have been a bit longer to show what 

makes them special, 𝑏 = 10 → 𝑏 − 1 = 32 → 𝑇3𝑘 = (1,1,3,3
2, 33, … ). The 

number of 1’s equals the power of the odd prime factor of 𝑏 − 1. 

1

𝑏 − 1
=
1

𝑏
+
1

𝑏2
+
1

𝑏3
+⋯ 

1/(𝑏 − 1) = (0. 1̅)𝑏 → 𝑇𝑏−1(𝑏) = 1 

𝑏 − 1 = 𝑝1
𝑘1𝑝2

𝑘2 ⋅ … ⋅ 𝑝𝑁
𝑘𝑁  

1 = lcm(𝑇
𝑝1
𝑘1(𝑏), … , 𝑇𝑝𝑁𝑘𝑁(𝑏)) → 𝑇

𝑝
𝑗

𝑘𝑗(𝑏) = 1 
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32|(10 − 1)
1

31
= 0. 3̅

1

32
= 0. 1̅

1

33
= 0. 037̅̅ ̅̅ ̅

1

34
= 0. 012345679̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

Theorem. (Orange cases) 

The sequences (𝑇𝑝𝑘(𝑏))𝑘=1
∞  with 𝑝 an odd prime factor of 𝑏 − 1 starts with 

𝑇𝑝𝑘(𝑏) = 1 for 𝑘 ≤ 𝑁 where 𝑁 is given by: 𝑏 − 1 = 𝛼𝑝𝑁 and  gcd(𝛼, 𝑝)=1. 

The 1’s are followed by a geometric sequence 𝑇𝑝𝑁+𝑚(𝑏) = 𝑝
𝑚 for 𝑚 ∈ ℤ+. 

Proof. 

𝑏 − 1 = 𝛼𝑃𝑁

gcd(𝛼, 𝑝) = 1
} ⇒

𝑏 ≡ 1 (mod 𝑝𝑘)  𝑘 ≤ 𝑁

𝑏 ≢ 1 (mod 𝑝𝑘)  𝑘 > 𝑁
⇒
𝑇𝑝𝑘(𝑏) = 1  for 𝑘 ≤ 𝑁

𝑇𝑝𝑘(𝑏) > 1  for 𝑘 > 𝑁
 

 

𝑏 = 1 + 𝛼𝑝𝑁 → 

𝑏𝑝
𝑚
= (1 + 𝛼𝑝𝑁)𝑝

𝑚
=∑(

𝑝𝑚

𝑖
) 𝛼𝑖𝑝𝑁𝑖

𝑝𝑚

𝑖=0

= 1 +∑(
𝑝𝑚

𝑖
) 𝛼𝑖𝑝𝑁𝑖

𝑝𝑚

𝑖=1

 

= 1+ 𝑝𝑁+𝑚 (𝛼 +
𝛼2

𝑝𝑚
(
𝑝𝑚

2
)𝑝𝑁 +⋯+

𝛼𝑝
𝑚−1

𝑝𝑚
(
𝑝𝑚

𝑝𝑚 − 1
)𝑝(𝑝

𝑚−1)𝑁 +
𝛼𝑝

𝑚

𝑝𝑚
(
𝑝𝑚

𝑝𝑚
)𝑝𝑝

𝑚𝑁) 

= 1 + 𝑝𝑁+𝑚(𝛼 + 𝑘𝑝)   [𝑚 ≥ 1 , 𝑁 ≥ 1 , 𝑘 ∈ ℤ ] 

𝑏𝑝
𝑚
≡ 1 (mod 𝑝𝑁+𝑚) ⇒ 𝑇𝑝𝑁+𝑚(𝑏)|𝑝

𝑚 

For 𝑚 = 1:  
𝑇𝑝𝑁+1(𝑏)|𝑝

𝑇𝑝𝑁+1(𝑏) > 1
⇒ 𝑇𝑝𝑁+1(𝑏) = 𝑝  

For 𝑚 ≥ 2: 

𝑏𝑝
𝑚−1

= 1 + 𝑝𝑁+𝑚−1 (𝛼 +
𝛼2(𝑝𝑚−1 − 1)

2
𝑝𝑁 +⋯+ 𝛼𝑝

𝑚−1
𝑝(𝑝

𝑚−1𝑁−(𝑚−1))) 

= 1 + 𝑝𝑁+𝑚−1(𝛼 + 𝑘𝑝)     [ α, 𝑘 ∈ ℤ , gcd(𝛼, 𝑝) = 1 ] 

𝑏𝑝
𝑚−1

≢ 1 (mod 𝑝𝑁+𝑚 ) ⇒ 𝑇𝑝𝑁+𝑚(𝑏) ∤ 𝑝
𝑚−1 

𝑇𝑝𝑁+𝑚(𝑏) ∤ 𝑝
𝑚−1

𝑇𝑝𝑁+𝑚(𝑏)|𝑝
𝑚 ⇒ 𝑇𝑝𝑁+𝑚(𝑏) = 𝑝

𝑚 ∎ 

The remaining exceptions to 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1 in table 4.4 are marked 

in red. They all seem to follow (𝑇𝑝𝑘(𝑏))𝑘=1
∞ = (𝛼, 𝛼, 𝛼𝑝, 𝛼𝑝2, … ). A search 

for exceptions not belonging to previous cases for 𝑝 ≤ 99 and 𝑏 ≤ 18 gives: 

base 3 𝑝 = 11 (𝑇11𝑘(3))𝑘=1
∞  : 5 5 5 ⋅ 11 5 ⋅ 112 … 

base 7 𝑝 = 5 (𝑇5𝑘(7))𝑘=1
∞  : 4 4 4 ⋅ 5 4 ⋅ 52 … 
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base 8 𝑝 = 3 (𝑇3𝑘(8))𝑘=1
∞  : 2 2 2 ⋅ 3 2 ⋅ 32 … 

base 9 𝑝 = 11 (𝑇11𝑘(9))𝑘=1
∞  : 5 5 5 ⋅ 11 5 ⋅ 112 … 

base 11 𝑝 = 71 (𝑇71𝑘(11))𝑘=1
∞  : 70 70 70 ⋅ 71 70⋅ 712 … 

base 14 𝑝 = 29 (𝑇29𝑘(14))𝑘=1
∞  : 28 28 28 ⋅ 29 29⋅ 292 … 

base 17 𝑝 = 3 (𝑇3𝑘(17))𝑘=1
∞  : 2 2 2 ⋅ 3 2 ⋅ 32 … 

base 18 𝑝 = 5 (𝑇5𝑘(18))𝑘=1
∞  : 4 4 4⋅ 5 4⋅ 52 … 

base 18 𝑝 = 7 (𝑇7𝑘(18))𝑘=1
∞  : 3 3 3 3 ⋅ 7 3 ⋅ 72 … 

base 18 𝑝 = 37 (𝑇37𝑘(18))𝑘=1
∞  : 36 36 36⋅ 37 36⋅ 372 … 

⋮ 

What makes these primes in these bases special and what about the exception 

to the exceptions, 𝑝 = 7 in base 18 that starts with three identical numbers 

instead of two before a possible geometric series? 

The property that singles out these primes is not obvious. Fermat’s little 

theorem states that for every prime 𝑝 ∤ 𝑏, 𝑏𝑝−1 ≡ 1 (mod 𝑝) which in terms 

of periods means that 𝑇𝑝(𝑏)|(𝑝 − 1). In some rare cases 𝑏𝑝−1 ≡ 1 (mod 𝑝2) 

[ 𝑇𝑝2(𝑏)|(𝑝 − 1) ]. All examples given so far from case 3 have this property. 

For the exception to the exception, 𝑝 = 7 in base 18, 𝑏𝑝−1 ≡ 1 (mod 𝑝3). 

Definition. (Wieferich primes) 

A base-𝑏 Wieferich prime of order 𝑛 (𝑛 ≥ 2) is a prime 𝑝 that satisfies: 

𝑏𝑝−1 ≡ 1 (mod 𝑝𝑛) and 𝑏𝑝−1 ≢ 1 (mod 𝑝𝑛+1) 

A Wieferich prime of order 𝑛 satisfies 𝑏𝑝−1 ≡ 1 (mod 𝑝𝑘) for every 𝑘 ≤ 𝑛, 

since 𝑝𝑛|(𝑏𝑝−1 − 1) ⇒ ∀𝑘 ≤ 𝑛: 𝑝𝑘|(𝑏𝑝−1 − 1). 

Wieferich primes less than 108 of order 2 for bases less than 26. 

𝑏 𝑝 𝑏 𝑝 

2 1093, 3511 14 29, 353  

3 11 15 29131 

4 1093, 3511 16 1093, 3511 

5 2, 20771, 40487, 53471161 17 3, 46021, 48947 

6 66161, 534851, 3152573 18 5, 37, 331, 33923, 1284043 

7 5, 491531 19 3, 13, 43, 137, 63061489 

8 3, 1093, 3511 20 281, 46457, 9377747 

9 11, 1006003 21 2 

10 3, 487, 56598313 22 13, 673, 1595813 

11 71 23 13, 2481757, 13703077 

12 2693, 123653 24 5, 25633 

13 2, 863, 1747591 25 20771, 40487, 53471161 

Fig. 4.6  Base-𝑏 Wieferich primes of order 2. 
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Some base-𝑏 Wieferich primes 𝑝 of order 𝑛 higher than 2. 

𝑛 (𝑏, 𝑝) 

3 (18,7) , (19,7) , (26,3) , (124,11) 

4 (80,3) , (161,3) , (182,5) 

5 (242,3) 

Fig. 4.7  Base-𝑏 Wieferich primes of higher order. 

Examples: 

Order 3 𝑏=124 𝑝=11 (𝑇11𝑘(124))𝑘=1
∞  : 5 5 5 5 ⋅ 111 5 ⋅ 112 ⋯ 

Order 4 𝑏=182 𝑝=5 (𝑇5𝑘(182))𝑘=1
∞  : 4 4 4 4 4 ⋅ 51 4 ⋅ 52 ⋯ 

Order 5 𝑏=242 𝑝=3 (𝑇3𝑘(242))𝑘=1
∞  : 2 2 2 2 2 2 ⋅ 31 2 ⋅ 32 ⋯ 

Theorem. (Red cases) 

If 𝑝 is a base-𝑏 Wieferich prime of order 𝑛 then 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) for 𝑘 ≤ 𝑛 

and 𝑇𝑝𝑛+𝑚(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑚 for 𝑚 ∈ ℤ+. 

Proof. 

I. Show for 𝑘 ≤ 𝑛: 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) = 𝑇 i.e.   
𝑏𝑇 ≡ 1 (mod 𝑝𝑘)

𝑏𝑡 ≢ 1 (mod 𝑝𝑘) for t < T 
 

 
 

𝑇𝑝(𝑏) = 𝑇 →

𝑇|𝜑(𝑝) → 𝑝 − 1 = 𝑘0𝑇 and 𝑝 ∤ 𝑘0
𝑏𝑇 − 1 = 𝑘1𝑝 → 𝑏𝑛𝑇 − 1 = (𝑏𝑇 − 1)(… ) → 𝑏𝑛𝑇 = 𝐾𝑝 + 1

𝑏𝑡 ≢ 1 (mod 𝑝) for 𝑡 < 𝑇

 

Wieferich condition→ ∀𝑘 ≤ 𝑛: 𝑏𝑝−1 ≡ 1 (mod 𝑝𝑘) 

𝑏𝑝−1 − 1 = 𝑏𝑘0𝑇 − 1 = (𝑏𝑇 − 1)(𝑏(𝑘0−1)𝑇 +⋯+ 𝑏𝑇 + 1) →  

𝑏𝑝−1 − 1 = (𝑏𝑇 − 1)(𝐾′𝑝 + 𝑘0) 

∀𝑘 ≤ 𝑛: 𝑝𝑘|(𝑏𝑝−1 − 1) ∧ 𝑝 ∤ (𝐾𝑝 + 𝑘0) ⇒ 𝑝𝑘|(𝑏𝑇 − 1) ⇒ 𝑏𝑇 ≡ 1(mod 𝑝𝑘) 

𝑏𝑡 ≡ 1 (mod 𝑝𝑘) for 𝑡 < 𝑇 ⇒ 𝑏𝑡 − 1 = 𝐾𝑝𝑘 ⇒ 𝑏𝑡 − 1 = 𝐾′𝑝 ⇒  

𝑏𝑡 ≡ 1 (mod 𝑝) for 𝑡 < 𝑇 , a contradiction to 𝑇𝑝(𝑏) = 𝑇 

∴ 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) for 𝑘 ≤ 𝑛 

II. Show 𝑇𝑝𝑛+𝑚(𝑏) = 𝑇 ⋅ 𝑝
𝑚 for 𝑚 ∈ ℤ+ 

A. Show 𝑇𝑝𝑛+1(𝑏) = 𝑇 ⋅ 𝑝 

𝑏𝑇𝑝 − 1 = (𝑏𝑇 − 1)(𝑏(𝑝−1)𝑇 +⋯+ 𝑏𝑇 + 1)       [ 𝑏𝛼𝑇 = 𝛽𝑝 + 1 ] 

 = (𝑏𝑇 − 1)(𝑘𝑝 + 𝑝) 

𝑇𝑝𝑛(𝑏) = 𝑇 → 𝑏𝑇 − 1 = 𝑘′𝑝𝑛 

𝑏𝑇𝑝 − 1 = 𝑘′′𝑝𝑛+1 ⇒ 𝑏𝑇𝑝 ≡ 1 (mod 𝑝𝑛+1 ) 
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Assume 𝑏𝑡 ≡ 1 (mod 𝑝𝑛+1) with 𝑡|𝑇𝑝 and 𝑡 < 𝑇𝑝: 

•  𝑡 < 𝑇 ⇒ 𝑏𝑡 ≡ 1 (mod 𝑝𝑛) contradicts 𝑇𝑝𝑛(𝑏) = 𝑇 

•  𝑡 = 𝑇 ⇒ 𝑏𝑇 ≡ 1 (mod 𝑝𝑛+1) ∧ 𝑏𝑝−1 − 1 = (𝑏𝑇 − 1)(𝐾′𝑝 + 𝑘0) ⇒ 

         𝑏𝑝−1 ≡ 1 (mod 𝑝𝑛−1) contradicts 𝑝 being a Wieferich prime of order 𝑛 

• {
𝑡 = 𝛼𝑝
𝛼|𝑇, 𝛼 < 𝑇

→
𝑏𝛼𝑝 ≡ 1 (mod 𝑝𝑛+1) → 𝑏𝛼𝑝 ≡ 1 (mod 𝑝𝑛)

𝑝 Wprime of order 𝑛:   𝑏𝑝−1 ≡ 1 (mod 𝑝𝑛)
→ (𝑝 − 1)|𝛼𝑝 

        → (𝑝 − 1)|𝛼|𝑇|(𝑝 − 1) → 𝛼 = 𝑇 = (𝑝 − 1) → 𝑡 = 𝑇𝑝 a contradiction. 

∴ 𝑏𝑡 ≢ 1 (mod 𝑝𝑛+1) so 𝑇𝑝𝑛+1(𝑏) = 𝑇𝑝 

B. Prove by induction that 𝑇𝑝𝑛+𝑚(𝑏) = 𝑇 ⋅ 𝑝
𝑚 for 𝑚 ∈ ℤ+ 

𝑏𝑇𝑝
𝑚
− 1 = (𝑏𝑇𝑝

𝑚−1)
)
𝑝

− 1 = (𝑘𝑝𝑛+𝑚−1 + 1)𝑝 − 1 = 𝑘′𝑝𝑛+𝑚 ⇒ 

𝑏𝑇𝑝
𝑚
≡ 1 (mod 𝑝𝑛+𝑚) ⇒ 𝑇𝑝𝑛+𝑚(𝑏)|𝑇𝑝

𝑚 

Show 𝑡 < 𝑇𝑝𝑚 ⇒ 𝑏𝑡 ≢ 1 (mod 𝑝𝑛+𝑚)  Need only check 𝑡 < 𝑇𝑝𝑚 , 𝑡|(𝑇𝑝𝑚) 

Assume 𝑡|𝑇𝑝𝑚−1 and 𝑡 < 𝑇𝑝𝑚−1, If 𝑏𝑡 ≡ 1 (mod 𝑝𝑛+𝑚) then 

𝑏𝑡 ≡ 1 (mod 𝑝𝑛+𝑚−1) which contradicts 𝑇𝑝𝑛+𝑚−1(𝑏) = 𝑇𝑝
𝑚−1. 

Left to check is that 𝑏𝑡 ≢ 1 (mod 𝑝𝑛+𝑚) when 𝑡 = 𝑇𝑝𝑚−1. 

𝑏𝑇𝑝
𝑚−1

− 1 = (𝑏𝑇𝑝
𝑚−2

)
𝑝
− 1 = 

(𝑏𝑇𝑝
𝑚−2

− 1)(𝑏(𝑝−1)𝑇𝑝
𝑚−2

+ 𝑏(𝑝−2)𝑇𝑝
𝑚−2

+⋯+ 𝑏𝑇𝑝
𝑚−2

+ 1) = 
(𝐾𝑝𝑛+𝑚−2)((𝑘𝑝𝑛+𝑚−2 + 1)𝑝−1 + (𝑘𝑝𝑛+𝑚−2 + 1)𝑝−2 +⋯+ (𝑘𝑝𝑛+𝑚−2 + 1) + 1) =      

𝐾𝑝𝑛+𝑚−2(𝐾′𝑝𝑛+𝑚−2 + 𝑝𝑛+𝑚−2((𝑝 − 1)𝑘 + (𝑝 − 2)𝑘 + ⋯+ 𝑘) + 𝑝) = 

𝐾𝑝𝑛+𝑚−1(𝐾′′𝑝 + 1) ∧ 𝐾 ∉ 𝑝ℤ ⇒ 

𝑝𝑛+𝑚 ∤ (𝑏𝑇𝑝
𝑚−1

− 1) ⇒ 𝑏𝑇𝑝
𝑚−1

≢ 1 (mod 𝑝𝑛+𝑚) 

∴ 𝑏𝑡 ≢ 1 (mod 𝑝𝑛+𝑚) for every 𝑡 < 𝑇𝑝𝑚 and 𝑏𝑇𝑝
𝑚
≡ 1 (mod 𝑝𝑛+𝑚) 

∴  𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) for 𝑘 ≤ 𝑛  and   𝑇𝑝𝑛+𝑚(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑚 for 𝑚 ∈ ℤ+ ∎ 

Wieferich primes of base 2, 𝑝2|(2𝑝−1 − 1) were first considered by Arthur 

Wieferich (1884 – 1954) in connection with Fermat’s last theorem. Only two 

such primes are known, 1093 and 3511. He proved that if 𝑥𝑝 + 𝑦𝑝 + 𝑧𝑝 = 0 

with 𝑝 a prime such that 𝑝 ∤ 𝑥𝑦𝑧 then 𝑝 is a Wieferich prime (of base 2). 

Very little is known about the distribution of these primes. A conjecture says 

that there is an infinite number of them for every order in each base and that 

the number of Wieferich primes below 𝑛 is about log(log(𝑛)). It would seem 

obvious that the number of non-Wieferich primes should be infinite but even 

this is hard to prove. It would follow from a proof of the abc conjecture. 
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The ABC conjecture and Shinichi Mochizuki 

The abc conjecture is one of the most famous conjectures in mathematics. 

A long list of historic problems and conjectures would be solved by a 

proof of the abc conjecture. It was first proposed by Joseph Oesterlé and 

David Masserin the 1980's, the conjecture is also known as the Oesterlé-

Masser conjecture. Some theorems following from the abc conjecture and 

unproved at the time have since been proved by other means. 

Henceforth assume that 𝑎, 𝑏, 𝑐 ∈ ℤ+ with gcd(𝑎, 𝑏, 𝑐) = 1 and 𝑎 + 𝑏 = 𝑐. 

There is no obvious reason that links the prime factors of a and b to those 

of their sum c. The abc conjecture provides a link. It roughly states that if 

a and b have many small prime factors then c will have few and large 

prime factors. It can be stated in terms of the radical rad(𝑛), a measure of 

the size of the primes in 𝑛, rad(𝑝1
𝑘1𝑝2

𝑘2 ⋅ … ⋅ 𝑝𝑛
𝑘𝑛) ≡ 𝑝1𝑝2 ⋅ … ⋅ 𝑝𝑛. In most 

cases rad(𝑎𝑏𝑐) > 𝑐. The abc conjecture is about the exceptions, how 

frequent and how extreme can they be. In terms of triples (𝑎, 𝑏, 𝑐): 

ABC conjecture: For every 𝜀 > 0 there is only finitely many (𝑎, 𝑏, 𝑐) s.t. 

rad(𝑎, 𝑏, 𝑐)1+𝜀 < 𝑐 

𝜀 > 0 is necessary, there are infinitely many triples with rad(𝑎𝑏𝑐) < 𝑐 : 

Example. 

𝑎 = 1 𝑏 = 26𝑛 − 1 = 64𝑛 − 1 = (64 − 1)𝑀 = 9𝑁 𝑐 = 26𝑛 

rad(𝑎𝑏𝑐) = rad(𝑎)rad(𝑏)rad(𝑐) = 2 ⋅ 3 ⋅ rad(𝑏/9) ≤ 2𝑏/3 < 2𝑐/3 

Each 𝑛 ∈ ℤ+ gives an example where rad(𝑎𝑏𝑐) < 𝑐. There is even an 

infinity of triples (𝑎, 𝑏, 𝑐) with rad(𝑎, 𝑏, 𝑐) < 𝑘𝑐 for any 𝑘 > 0. 

𝑎 = 1 𝑏 = 2𝑝(𝑝−1)𝑛 − 1 𝑐 = 2𝑝(𝑝−1)𝑛 where 𝑝 is an odd prime leads 

to rad(𝑎𝑏𝑐) < 2𝑐/𝑝 

Another way of formulating the abc conjecture is in terms of quality. The 

quality of a triplet (𝑎, 𝑏, 𝑐) is defined as: 

𝑞(𝑎, 𝑏, 𝑐) ≝
log(𝑐)

log(rad(𝑎𝑏𝑐))
     (  rad(𝑎𝑏𝑐)𝑞(𝑎,𝑏,𝑐) = 𝑐  ) 
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ABC conjecture: For every 𝜀 > 0 there is only finitely many (𝑎, 𝑏, 𝑐) s.t. 

𝑞(𝑎, 𝑏, 𝑐) > 1 + 𝜀 

There are infinitely many triples with 𝑞(𝑎, 𝑏, 𝑐) > 1 but for any 𝜀 > 0 

only a finite number of them has 𝑞(𝑎, 𝑏, 𝑐) > 1 + 𝜀. Assuming the abc 

conjecture true there should be a triple (𝑎, 𝑏, 𝑐) that achieves the maximal 

possible value of 𝑞(𝑎, 𝑏, 𝑐). The highest quality found so far is 1.63: 

𝑎 = 2
𝑏 = 310 ⋅ 109 = 6 436 341
𝑐 = 235 = 6 435 343

→
rad(𝑎𝑏𝑐) = 15042

𝑞(𝑎, 𝑏, 𝑐) = 1.63…

150421+0.63… = 𝑐

 

Constructing a proof of the abc conjecture would give a proof of the 

statements listed below. Some of them have been proved later by other 

means, but a proof of ABC would still give new insights to the theorems. 

• Roth’s theorem, concerning how well irrational algebraic numbers are 

approximated by rational numbers: 

|𝛼 −
𝑝

𝑞
| <

1

𝑞2+𝜀
 has only finitely many coprime solutions (𝑝, 𝑞). 

• Existence of infinitely many non-Wieferich primes in every base. 

• Brocard’s problem: find (𝑚, 𝑛) ∈ ℤ2: 𝑛! + 1 = 𝑚2. ABC implies that 

𝑛! + 𝑘 = 𝑚2 has only finitely many solutions for any 𝑘 ∈ ℤ. 

• Mordell’s conjecture, important conjecture made by Mordell in 1922. 

A curve of genus > 1 over ℚ has only finitely many rational points. 

It was proved by Gerd Falting in 1983 and renamed Falting’s theorem. 

• Hall’s conjecture in weak form for the distance between 𝑦2and 𝑥3: 

∀𝜀 > 0 ∃𝐶 > 0 ∶  |𝑦2 − 𝑥3| > 𝐶𝑥1/2−𝜀    (𝑥, 𝑦) ∈ ℤ2 

𝜀 = 0 gives the original (strong) form, which is believed to be false. 

• Fermat-Catalan’s conjecture: 𝑎𝑚 + 𝑏𝑛 = 𝑐𝑘 with integer variables, 

𝑚, 𝑛, 𝑘 > 0, 1/𝑚 + 1/𝑛 + 1/𝑘 < 1, distinct triplets (𝑎𝑚, 𝑏𝑛, 𝑐𝑘) 
and gcd(𝑎, 𝑏, 𝑐) = 1 has only a finite number of solutions. 

Only ten are known and 1𝑚 + 23 = 32 is the only one with a 1 in it. 

• The number of integer solutions to 𝑦𝑚 = 𝑥𝑛 + 𝑘 is finite. (𝑚, 𝑛 > 1) 
• The number of integer solutions to 𝐴𝑥𝑛 − 𝐵𝑦𝑚 = 𝐶 with fixed 

positive integers 𝐴, 𝐵, 𝐶 and (𝑚, 𝑛) ≠ (2,2) is finite. 

• Bael’s conjecture: If 𝑎, 𝑏, 𝑐, 𝑥, 𝑦 and 𝑧 are positive integers with 

𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧  and 𝑥, 𝑦, 𝑧 > 2 then gcd(𝑎, 𝑏, 𝑐) = 1. 

• Szpiro’s modified conjecture for elliptic curves. 

Fermat’s last theorem, 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 for 𝑛 ≥ 6 follows immediately if  

𝑞(𝑎, 𝑏, 𝑐) ≤ 2 is assumed. The value for the upper limit of the quality 

𝑞(𝑎, 𝑏, 𝑐) is however not a part of the abc conjecture. 
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Noam Elkie was one of the first to realize how a proof of abc conjecture 

would revolutionize the study of Diophantine equations (integer solutions 

to polynomial equations). He proved that abc would lead to solutions of a 

big collection of famous and unsolved equations. This is due to the 

explicit bounds that the conjecture sets on the size of a solution. To find 

all solutions, only numbers below that bound need to be considered. 

This meant that the abc conjecture (if proved) would supersede Louis 

Mordell’s conjecture from 1922 as the most important breakthrough in 

the history of Diophantine equations. Mordell’s conjecture states that a 

curve of genus greater than 1 (more than two holes in it) with coefficients 

in ℚ has only finitely many rational points on it’s “surface”. The vast 

majority of Diophantine equations would either have no solutions at all or 

only a finite number of them. 

Mordell’s conjecture was proved by Gerd Faltings in 1983. He was 28 at 

the time and won a Fields medal for his work three years later. Mordell’s 

conjecture follows from abc. Of the abc conjecture Faltings has said “If 

the abc conjecture is true you would know not just that there is a finite 

number of solutions, you could list them all” 

To prove the abc conjecture would be a big step forward for mathematics 

and an enormous achievement for the person who did it. 

In the morning of August 30, 

2012, it might very well have 

happened. Shinichi Mochizuki 

posted four papers on his web-

site, filled with 600 pages of very 

advanced, abstract and new ideas 

It was a new mathematical theory 

He called it inter-universal Teichmüller theory and it resulted in a proof of 

the abc conjecture. This was not the first attempt to conquer the abc 

conjecture. It is a very hard problem, Lucien Szpiro had made an attempt 

in 2007 but his proof turned out to be incorrect. 

Famous mathematical problems often attract the attention of amateur 

mathematicians but the abc conjecture is not the type of problem that 

usually attract their attention and Shinichi Mochizuki is not an amateur 

mathematician, far from it. He is a mathematician of the highest rank. 

. 
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Shinichi was born 1969 in Tokyo, Japan but grew up in USA where his 

family had moved when he was a child; a talented and precocious child 

that started at Princeton’s mathematical department at age 16. It didn’t 

take long before he started on a PhD. People who know him describe him 

as a very original thinker that works hard and focused on mathematical 

problems, a private person and a creature of habit with an office and desk 

in perfect order. 

After Faltings had solved Mordell’s conjecture he started teaching at 

Princeton, where he became advisor to Mochizuki for his senior thesis 

and for his doctoral thesis. Falting was known as a very demanding 

examiner, some would say intimidating. Even eminent mathematicians 

would become nervous when Falting criticized a mistake in their work. 

He was just the right type of mathematician to prepare Mochizuki for his 

work to come. 

Falting’s field was algebraic geometry, an area of mathematics that had 

been transformed by Alexander Grothendieck into a very abstract and 

theoretical field, even though in the end it dealt with concrete algebraic 

equations to describe geometric structures. Grothendieck, often described 

as the greatest mathematician of the 20th century, had a propensity for 

philosophy whereas Faltings used the highly abstract theories to solve 

concrete problems, exactly the type of work that Mochizuki would need 

to solve the abc conjecture. 

After his PhD and two years at Harvard Mochizuki moved back to Japan, 

a country closer to his personality than America. He got a position at 

RIMS while still only 25 years old. RIMS, acronym for Research Institute 

of Mathematical Sciences is a part of Kyoto University and a place not 

unlike IAS (Princeton’s Institute for Advanced Study). It’s a place where 

faculty members can focus on research with no teaching required and 

little external disturbance. 

From his position at RIMS Mochizuki made major contributions to fields 

with names that only initiated know the meaning of; anabelian geometry, 

Hodge-Arakelov theory, p-adic Teichmüller theory, theory of Frobenoids 

and étale theta function theory. 

Mochizuki’s private and withdrawn personality makes him an unlikely 

candidate for international fame and reputation but this is exactly what 
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happened in 1996 (at least in some mathematical circles) when he proved 

a famous conjecture of Grothendieck. As Mochizuki’s reputation grew he 

started to move away from the mainstream of mathematics with work of 

ever increasing levels of abstraction that was becoming increasingly hard 

for his peers to understand. In the early 2000’s he stopped participating in 

international meetings and he rarely left Kyoto. He did keep in touch with 

some fellow number theorists who knew that he was having his eyes set 

for an attack on the abc conjecture. There was virtually no competition, 

most other mathematicians considered it a problem too hard to solve. 

By early 2012 rumors where emerging that Mochizuki was getting close 

to a proof and then in August 2012 it happened, without any fuss or any 

announcements he posted four papers on his website and waited for the 

world to find out what he had done. 

The first reaction of mathematicians in the field when they started to read 

the papers was often bewilderment. They could simply not understand it. 

One number theorist describes it as “reading a paper from the future or 

from outer space”. According to Mochizuki’s own estimate it would take 

a graduate student ten years to understand his work and for an expert in a 

field close to Mochizuki’s work it might take 500 hours. Top mathe-

maticians would hesitate to take on such a gigantic task, even Faltings 

who tried to read his work gave up after a while. The situation is not 

helped by Mochizuki’s reluctance to lecture outside Japan. 

Five years after the posting it’s still an open question in the mathematical 

community whether to accept the proof or not. Part of the problem 

according to Mochizuki is that mathematicians need to “deactivate their 

thought patterns” and think in new ways to understand his work. 

Fesenko, a number theorist from UK and one of the first outside Japan to 

take on Mochizuki’s work claims to have verified the proof. He describes 

the main theme of the new field ‘inter-universal geometry’ as looking at 

integers from a new perspective and seeing multiplication as something 

malleable and deformable. Classical multiplication would be just one 

particular case of a family of structures, in the same way as a circle is a 

special case of an ellipse. 

A problem for the acceptance of Mochizuki’s proof is that the few who 

claim to have grasped it have great difficulties to explain it to anyone else. 
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One mathematician says that the situation reminds him of the Monthy 

Python joke about a person who writes down the world’s funniest joke 

but anyone who reads it dies from laughing and can never talk about it. 

Five years after Mochizuki uploaded Inter-Universal Teichmüller theory 

(IUT I-IV) with a proof of the abc conjecture, the question whether the 

conjecture is now a proven theorem or still a conjecture is an open 

question. As an outsider one wonders, what is the problem? 

Several workshops have been organized to remedy the situation but 

progress has been slow. The result of the first workshop outside Asia, in 

Oxford December 2015 tells something about the problem. The first days 

covering pre-IUT material was okay but the last two days devoted to IUT 

lead mostly to frustrations among the gathered experts with lectures 

peppered with definitions and terminology in a very high pace with little 

room for questions. Many left little wiser about the key ideas of IUT than 

before. Mochizuki does his best to explain his ideas via e-mail and regular 

additions of remarks and clarifications to his posted papers. 

The process of how a proof becomes accepted by the mathematical 

community at large usually starts with a publication in a mathematical 

journal where the paper has undergone a thorough peer review prior to 

publication. Wiles’ original proof of FLT contained a critical error that 

was discovered during peer review. It took Wiles a year of hard work to 

fix the proof. The IUT papers has been submitted to PRIMS (Publications 

of RIMS) and rumor has it that publication will come in 2018. For general 

acceptance something more is probably needed, clarification of central 

parts and an understanding of the proof among some top mathematicians. 

The question of when to accept a mathematical proof is not new in the 

history of mathematics. In the early 20th century there were different 

schools of thought constructivism vs. realism that argued about whether 

to accept the axiom of choice or not. Then there was the question of 

computer-assisted proof and computer-aided proof-by-exhaustion. These 

techniques are now generally accepted, especially if complemented with 

independent programing to avoid programming errors and automated 

proof checking. These were however questions of a different kind. 

To ponder IUT, I give you the abstract of IUT I and IV plus a critical part 

from paper III where many can’t see the reasoning behind the red part. 
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INTER-UNIVERSAL TEICHMÜLLER THEORY I: 
CONSTRUCTION OF HODGE THEATERS 

 

Abstract. The present paper is the first in a series of four papers, the goal of which 

is to establish an arithmetic version of Teichmüller theory for number fields 

equipped with an elliptic curve — which we refer to as “inter-universal 

Teichmüller theory” — by applying the theory of semi-graphs of anabelioids, 

Frobenioids, the ´etale theta function, and log-shells developed in earlier papers 

by the author. We begin by fixing what we call “initial Θ-data”, which consists of 

an elliptic curve EF over a number field F, and a prime number l ≥ 5, as well as 

some other technical data satisfying certain technical properties. This data 

determines various hyperbolic orbicurves that are related via finite ´etale 

coverings to the once-punctured elliptic curve XF determined by EF . These finite 

´etale coverings admit various symmetry properties arising from the additive and 

multiplicative structures on the ring Fl = Z/lZ acting on the l-torsion points of the 

elliptic curve. We then construct “Θ±ellNF-Hodge theaters” associated to the 

given Θ-data. These Θ±ellNF-Hodge theaters may be thought of as miniature 

models of conventional scheme theory in which the two underlying combinatorial 

dimensions of a number field — which may be thought of as corresponding to the 

additive and multiplicative structures of a ring or, alternatively, to the group of 

units and value group of a local field associated to the number field — are, in some 

sense, “dismantled” or “disentangled” from one another. All Θ±ellNF-Hodge 

theaters are isomorphic to one another, but may also be related to one another by 

means of a “Θ-link”, which relates certain Frobenioid-theoretic portions of one 

Θ±ellNF-Hodge theater to another in a fashion that is not compatible with the 

respective conventional ring/scheme theory structures. In particular, it is a highly 

nontrivial problem to relate the ring structures on either side of the Θ-link to one 

another. This will be achieved, up to certain “relatively mild indeterminacies”, in 

future papers in the series by applying the absolute anabelian geometry developed 

in earlier papers by the author. The resulting description of an “alien ring 

structure” [associated, say, to the domain of the Θ-link] in terms of a given ring 

structure [associated, say, to the codomain of the Θ-link] will be applied in the 

final paper of the series to obtain results in diophantine geometry. Finally, we 

discuss certain technical results concerning profinite conjugates of decomposition 

and inertia groups in the tempered fundamental group of a p-adic hyperbolic curve 

that will be of use in the development of the theory of the present series of papers, 

but are also of independent interest.   
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8 pages later 
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INTER-UNIVERSAL TEICHMÜLLER THEORY IV: 
LOG-VOLUME COMPUTATIONS AND SET-THEORETIC FOUNDATIONS 

 
Abstract. The present paper forms the fourth and final paper in a series of papers 

concerning “inter-universal Teichmüller theory”. In the first three papers of the 

series, we introduced and studied the theory surrounding the logtheta-lattice, a 

highly non-commutative two-dimensional diagram of “miniature models of 

conventional scheme theory”, called Θ±ellNF-Hodge theaters, that were 

associated, in the first paper of the series, to certain data, called initial Θ-data. 

This data includes an elliptic curve EF over a number field F, together with a 

prime number l ≥ 5. Consideration of various properties of the log-theta-lattice led 

naturally to the establishment, in the third paper of the series, of multiradial 

algorithms for constructing “splitting monoids of LGP-monoids”. Here, we recall 

that “multiradial algorithms” are algorithms that make sense from the point of 

view of an “alien arithmetic holomorphic structure”, i.e., the ring/scheme structure 

of a Θ±ellNF-Hodge theater related to a given Θ±ellNF-Hodge theater by means 

of a non-ring/scheme-theoretic horizontal arrow of the log-theta-lattice. In the 

present paper, estimates arising from these multiradial algorithms for splitting 

monoids of LGP-monoids are applied to verify various diophantine results which 

imply, for instance, the so-called Vojta Conjecture for hyperbolic curves, the ABC 

Conjecture, and the Szpiro Conjecture for elliptic curves. Finally, we examine — 

albeit from an extremely naive/non-expert point of view! — the foundational/set 

theoretic issues surrounding the vertical and horizontal arrows of the log-theta-

lattice by introducing and studying the basic properties of the notion of a 

“species”, which may be thought of as a sort of formalization, via set-theoretic 

formulas, of the intuitive notion of a “type of mathematical object”. These 

foundational issues are closely related to the central role played in the present 

series of papers by various results from absolute anabelian geometry, as well as to 

the idea of gluing together distinct models of conventional scheme theory, i.e., in 

a fashion that lies outside the framework of conventional scheme theory. 

Moreover, it is precisely these foundational issues surrounding the vertical and 

horizontal arrows of the log-theta-lattice that led naturally to the introduction of 

the term “inter-universal”. 
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4.6 General Case 

It remains to prove that the general case of periods of prime powers follows 

𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1 when none of the special cases of the previous section 

applies. To do this, three lemmas will be used.  

Lemma 1.  

If 𝑎𝑖 ≡ 1 (mod 𝑝) for 𝑖 = 1,… ,𝑚 and 𝑚 ∈ ℤ+ then 

∑𝑎𝑖

𝑚

𝑖=1

≡ 0 (mod 𝑝) ⟺ 𝑚 ≡ 0 (mod 𝑝)   (The proof is left as an exercise) 

Lemma 2. 

If 𝑏𝑚𝑞 ≡ 1 (mod 𝑝𝑛) for some 𝑛 ≥ 1 with 𝑞 a multiple of the period of 𝑝 

and 𝑚 is not a multiple of 𝑝 then 𝑏𝑞 ≡ 1 (mod 𝑝𝑛). 

Proof. 

Show 
𝑏𝑚𝑞 ≡ 1 (mod 𝑝𝑛)

𝑇𝑝(𝑏)|𝑞 ∧ 𝑚 ≢ 0 (mod 𝑝)
} ⇒ 𝑏𝑞 ≡ 1 (mod 𝑝𝑛) 

Let 𝑇 = 𝑇𝑝(𝑏) so 𝑞 = 𝑑𝑇 for some 𝑑 ∈ ℤ. 

𝑏𝑚𝑞 − 1 = 𝑏𝑇𝑚𝑑 − 1 = (𝑏𝑇𝑑 − 1)(𝑏𝑇𝑑(𝑚−1) + 𝑏𝑇𝑑(𝑚−2) +⋯+ 𝑏𝑇𝑑 + 1) 

Lemma 1works on the second factor which has 𝑚 terms, each of which is 

congruent to 1 (mod 𝑝), since 𝑏𝑇 ≡ 1 (mod 𝑝). 

𝑝𝑛|𝑏𝑚𝑞 − 1 and 𝑚 ≢ 0 (mod 𝑝) gives by using lemma 1, 𝑝𝑛|𝑏𝑇𝑑 − 1 

∴ 𝑏𝑞 ≡ 1 (mod 𝑝𝑛) ∎ 

Lemma 2 gives an alternative definition of Wieferich primes in base 𝑏: 

𝑏𝑝−1 ≡ 1 (mod 𝑝2) ⇔ 𝑏𝑇𝑝(𝑏) ≡ 1 (mod 𝑝2) 

𝑇𝑝(𝑏)|𝑝 − 1 makes ⇐ obvious and ⇒ follows from lemma 2. 

Lemma 3. 

𝑏𝑇𝑝
𝑘−1

≡ 1 (mod 𝑝𝑘+1) ⇒ 𝑏𝑇𝑝
𝑘−2

≡ 1 (mod 𝑝𝑘) where 

𝑝 is an odd prime, 𝑘 > 1 and 𝑇 = 𝑇𝑝(𝑏). 

Proof. 

𝑏𝑇 ≡ 1 (mod 𝑝) → 𝑏𝑇 = 1 + 𝑛𝑝 for some 𝑛 ∈ ℤ. 

The binomial theorem gives {
(𝑏𝑇)𝑝

𝑘−1
≡ 1 + 𝑛𝑝𝑘  (mod 𝑝𝑘+1)    (1)

(𝑏𝑇)𝑝
𝑘−2

≡ 1 + 𝑛𝑝𝑘−1 (mod 𝑝𝑘)    (2)
 

Assuming 𝑏𝑇𝑝
𝑘−1

≡ 1 (mod 𝑝𝑘+1) and (1) gives 𝑝|𝑛 

From (2) and 𝑝|𝑛 follows 𝑏𝑇𝑝
𝑘−2

≡ 1 (mod 𝑝𝑘) ∎ 
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Theorem. (Power Rule Theorem) 

If 𝑝 > 2 is a prime that is not a factor of the base, not a period one prime and 

not a Wieferich prime for base 𝑏 then 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1 for 𝑘 > 1. 

Proof. 

Set 𝑇𝑝(𝑏) = 𝑇. Two things need to be shown:   
I.   𝑝𝑘|𝑏𝑇𝑝

𝑘−1
− 1 

II.  𝑝𝑘|𝑏𝑡 − 1 ⇒ 𝑡 ≥ 𝑇𝑝𝑘−1
 

I. 

𝑏𝑇 ≡ 1 (mod 𝑝) ⇒ 𝑏𝑇 − 1 = 𝑛𝑝  (𝑛 ∈ ℤ ) ⇒ 𝑏𝑇 = 𝑛𝑝 + 1 

𝑏𝑇𝑝
𝑘−1

− 1 = (𝑛𝑝 + 1)𝑝
𝑘−1

− 1 = 𝑛𝑝𝑘(1 + ⋯) ⇒ 𝑝𝑘|𝑏𝑇𝑝
𝑘−1

− 1 

II. 

Show for 𝑘 ≥ 2 that 𝑝𝑘|𝑏𝑡 − 1 ⇒ 𝑡 ≥ 𝑇𝑝𝑘−1  

Assume 𝑡 < 𝑇𝑝𝑘−1 then 𝑡 must be a multiple of 𝑇, the period of 𝑝 since 

𝑝𝑘|𝑏𝑡 − 1 ⇒ 𝑝|𝑏𝑡 − 1. Let 𝑡 = 𝑚𝑇. 

Case 1. 

𝑚 is a multiple of 𝑝. Write 𝑚 = 𝑟𝑝𝑢 with 1 ≤ 𝑢 < 𝑘 − 1   ( 𝑘 − 𝑢 ≥ 2 ) 

and 𝑟 not a multiple of 𝑝 → 𝑡 = 𝑟𝑝𝑢𝑇 

𝑝𝑘|𝑏𝑟𝑝
𝑢𝑇 − 1   By Lemma 2 we can cancel 𝑟 

𝑝𝑘|𝑏𝑝
𝑢𝑇 − 1  By Lemma 3 we can repeatedly cancel 𝑝′𝑠 from both sides 

𝑝𝑘−𝑢|𝑏𝑇 − 1   If 𝑇 = 1 then 𝑝 is a period one prime, i.e. a contradiction 

    𝑘 − 𝑢 ≥ 2 ⇒ 𝑏𝑇 ≡ 1 (mod 𝑝2) ⇒ 𝑝 is a Wieferich prime, a contradiction 

Case 2. 

𝑚 is not a multiple of 𝑝. 

𝑝𝑘|𝑏𝑚𝑇 − 1 By Lemma 2 we can cancel 𝑚 

𝑝𝑘|𝑏𝑇 − 1 and since 𝑘 ≥ 2 another contradiction of 𝑝 a Wieferich prime 

∴ 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1 if 𝑝 is not covered by the special cases ∎ 

In conclusion, 𝑇 the period i.e. the length of the smallest repeating section of 

a base 𝑏 expansion of a fraction 𝑚/𝑛 where 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 ⋅ … ⋅ 𝑝𝑁
𝑘𝑁  is zero (no 

repeating part when 𝑛 has only prime factors from the base and otherwise: 

 𝑇𝑛(𝑏) = lcm(𝑇𝑝1𝑘1(𝑏), 𝑇𝑝2𝑘2(𝑏), … , 𝑇𝑝𝑁𝑘𝑁(𝑏)) 

𝑝 = 2 𝑇2𝑘(𝑏) = [𝑘 ≤ 𝑁̃] ⋅ 1 + [𝑁̃ < 𝑘 ≤ 𝑁̃ + 𝑀̃] ⋅ 2 + [𝑘 > 𝑁̃ + 𝑀̃] ⋅ 4 ⋅ 2
𝑘−1−𝑁̃−𝑀̃ 

𝑝|𝑏 𝑇𝑝𝑘(𝑏) ≡ 1                                                 (𝑏 = 𝛼2𝑁̃ + 1 = 𝛽2𝑀̃ − 1) 

𝑝|𝑏 − 1 𝑇𝑝𝑘(𝑏) = [𝑘 ≤ 𝑁̃] ⋅ 1 + [𝑘 > 𝑁̃] ⋅ 𝑝
𝑘−𝑁̃                       (𝑏 − 1 = 𝛼𝑝𝑁̃) 

𝑝2|𝑏𝑝−1 − 1 𝑇𝑝𝑘(𝑏) = [𝑘 ≤ 𝑁̃] ⋅ 𝑇𝑝(𝑏)+ [𝑘 > 𝑁̃] ⋅ 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−𝑁̃ (𝑁̃ is order of 𝑝) 

Otherwise: 𝑇𝑝𝑘(𝑏) = 𝑇𝑝(𝑏) ⋅ 𝑝
𝑘−1 
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The original problem of finding a digit sequence xyz… and 𝐴 + 𝐵 + 𝐶 = 1: 

A:    0.xyz........ ( Everything in base 10 ) 

B:    0.00xyz...... ( B=1% of A=10-2A ) 

C:    0.00000xyz... ( C=1‰ of B=10-5A ) 

A+B+C=0.99999999... 

was solved by 𝐴 = 𝑚/𝑛 = 100 000/101 001. To find out for how long we 

need to do long division before digits start to repeat we can use what we 

know so far to calculate periods: 

𝑛 = 101 001 = 3113112571 → 𝑇101 001 = lcm(T3, T131, T257) 

𝑇𝑝|𝜑(𝑝) = 𝑝 − 1 → 𝑇3|2 𝑇131|2
151131 𝑇257|2

8    MultiplicativeOrder→ 

𝑇3 = 1 𝑇131 = 2
151131 T257 = 2

8 → 𝑇101 001 = 2
851131 = 16 640 

The 4-term problem 𝐴 + 𝐵 + 𝐶 + 𝐷 = 1 : 

𝐵 = 1% of 𝐴 𝐶 = 1ppm of 𝐵 𝐷 = 1‰ of 𝐶 → 

𝐴 = 𝑚/𝑛 with 𝑛 = 101 000 001 001 = 107 ⋅ 943 925 243 

𝑇107 = 53 , 𝑇943 925 243 = 13
123911519031 → 𝑇𝑛 = 25 014 018 913 

4.7 Period of Primes 

Understanding the period of a general fraction 𝑚/𝑛 has so far been reduced 

to understanding the period of prime reciprocals 𝑇𝑝(𝑏) where we can assume 

that 𝑝 is not a divisor of the base, 𝑝 ∤ 𝑏. 

 0. 1 4 2 8 5 7 

7 1. 0 0 0 0 0 0 

 0       

 1 0      

 – 7      

  3 0     

 – 2 8     

   2 0    

  – 1 4    

    6 0   

   – 5 6   

     4 0  

    – 3 5  

      5 0 

     – 4 9 

       1 

Each step in the long division gives a 

residue 𝑟𝑘 in the multiplicative group ℤ𝑝
∗  

𝑟𝑘+1 ≡ 𝑏𝑟𝑘( mod 𝑝). When a residue 

repeats the cycle is closed. 

N.B. 𝑏𝑠 ≡ 𝑏𝑡 ∧ 𝑝 ∤ 𝑏 ⇒ 𝑠 ≡ 𝑡  (mod 𝑝) 

Each possible 𝑟𝑘 leads to a unique 𝑟𝑘+1 

and ℤ𝑝
∗  is finite so (𝑟𝑘)𝑘=1

∞  is periodic. 

𝑏𝑝−1 ≡ 1(mod 𝑝) ∧ 𝑟𝑘+1 ≡ 𝑏𝑟𝑘(mod 𝑝) 

⇒ 𝑟𝑘+𝑝−1 ≡ 𝑏
𝑝−1𝑟𝑘 ≡ 𝑟𝑘  (mod 𝑝) ⇒ 

The period of 𝑝−1 must divide 𝑝 − 1. 

𝑇𝑝(𝑏)|𝑝 − 1 

The period 𝑇𝑝(𝑏) is bounded by 𝑝 − 1. 
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A prime that attains this maximal period is called a full reptend prime (for a 

given base). In base 10 the full reptend primes, with 𝑇𝑝(10) = 𝑝 − 1 are: 

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, … 

 

       

Fig. 4.7  Plot of 𝑇𝑝 as a function of 𝑝 and fraction of full reptend primes in base 10. 

The first residue in (𝑟𝑘)𝑘=1
𝑇𝑝

 for the fraction 𝑚/𝑝 with 𝑚 ∈ {1, . . , 𝑝 − 1} and 

𝑝 a full reptend prime is 𝑚 and then it continues cyclically in the same way, 

𝑟𝑘+1 ≡ 𝑏𝑟𝑘  (mod 𝑝) as for 1/𝑝. The digits of 𝑚/𝑝 are given by an injective 

function from 𝑟𝑘 ∈ {1, … , 𝑝 − 1} to 𝑑𝑘 ∈ {0, … , 𝑏 − 1} where 𝑑𝑘 = ⌊𝑏𝑟𝑘/𝑝⌋. 

Example. 

1/7: (𝑟𝑘)𝑘=1
𝑇𝑝 = (1,3,2,6,4,5) (𝑑𝑘)𝑘=1

𝑇𝑝 = (1,4,2,8,5,7) 1 ⋅ 1/7 = 0. 142857̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

2/7: (𝑟𝑘)𝑘=1
𝑇𝑝 = (2,6,4,5,1,3) (𝑑𝑘)𝑘=1

𝑇𝑝 = (2,8,5,7,1,4) 2 ⋅ 1/7 = 0. 285714̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

3/7: (𝑟𝑘)𝑘=1
𝑇𝑝 = (3,2,6,4,5,1) (𝑑𝑘)𝑘=1

𝑇𝑝 = (4,2,8,5,7,1) 3 ⋅ 1/7 = 0. 428571̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

⋮ 

The repeating sequence (𝑑𝑘)𝑘=1
𝑇𝑝

 of a full reptend prime represents a cyclic 

number which means that cyclic permutations of the 𝑝 − 1 digits gives 

different multiples, from 1 to 𝑝 − 1 of the cyclic number. 

Example. 

 𝑝 = 7 𝑝 = 17 

 (𝑟𝑘)𝑘=1
𝑇𝑝 = (1,3,2,6,4,5) (𝑟𝑘)𝑘=1

𝑇𝑝 = (1,10,15,14,4,6,9,5,16,7,2,3,13,11,8,12) 

 1/7 = 0. 142857̅̅ ̅̅ ̅̅ ̅̅ ̅̅  1/17 = 0. 0588235294117647̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 142857⋅1=142857 0588235294117647⋅1=0588235294117647 

 142857⋅2=285714 0588235294117647⋅2=1176470588235294 

 142857⋅3=428571 0588235294117647⋅3=1764705882352941 

 142857⋅4=571428 0588235294117647⋅4=2352941176470588 

 142857⋅5=714285 0588235294117647⋅5=2941176470588235 

 142857⋅6=857142 0588235294117647⋅6=3529411764705882 

  ⋮ 

  0588235294117647⋅16=9411764705882352 
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Notice that 142 + 857 = 999 and 05882352 + 94117647 = 99999999. 

This is no coincidence. Midy’s theorem states that if 𝑚/𝑝 = 0. 𝑑1𝑑2…𝑑2𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in 

base 𝑏 with 𝑝 a prime then 𝑑𝑖 + 𝑑𝑖+𝑛 = 𝑏 for 𝑖 = 1,… , 𝑛. If 𝑇𝑝 is a multiple 

of 10 then each digit 0,1, … ,9 will appear the same number of times in the 

reptend. Such primes are called proper primes (for base 10). 

To finally get a grip on the period length of a fraction we need to understand 

the proportion of primes with a period of 𝑇𝑝 = (𝑝 − 1)/𝑘 for each 𝑘. Data 

suggests converging proportions for each value of 𝑘. The largest limiting 

proportion, C is for 𝑘 = 1, the full reptend primes with a limit around 37%. 

The limiting proportions equal a rational number times 𝐶. The number does 

not seem to depend on the base except for some exceptions. A square base 

such as 4 or 9 has no full reptend primes. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8  Proportion of primes with 𝑇𝑝 = (𝑝 − 1)/𝑘 for 𝑘 = 1,… ,7 

Conjecture.  (Artin’s conjecture) 

For a base 𝑏 that is not a perfect power and not 𝑏 = 𝑏0𝑐
2 with 𝑏0 square-free 

and 𝑏0 ≢ 1 (mod 4) the proportion of full reptend primes approach a limiting 

value that equals: 

∏ (1 −
1

𝑝(𝑝 − 1)
)

𝑝 ∈ ℙ

             (Product taken over all prime numbers) 

The constant is called Artin’s constant, 𝐶Artin = 0.3739558136… 

The conjecture is true if the generalized Riemann hypothesis holds. This was 

shown by Hooley in 1967. 

Further explorations of Artin’s conjecture and the Riemann hypothesis and its 

generalizations are left for later chapters. 
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