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1 

Exercises 

Ch.1  Introduction 
 

1.1 Calculate the proportion of space occupied 

 by spheres in the regular packing. 

 

1.2 Write an algorithm or program to derive the period of a fraction 

 

Ch.2  Origins 

 
2.1 Which fractions have a finite sexagesimal expansion? 

 Calculate the sexagesimal expansion of the first  

 sexagesimally periodic fraction in the series (1 𝑛⁄ )𝑛=1
∞ . 

2.2 Pick a number 𝑎1 > 0 and let 𝑎𝑘+1 =
𝑎𝑘+𝑁 𝑎𝑘⁄

2
. Show that lim

𝑘→∞
𝑎𝑘 = √𝑁 . 

 This could be the method behind the approximation on YBC 7289. 

 

2.3 Show that every fraction can be written as an Egyptian fraction: 

𝑝

𝑞
= 𝑁 +∑

1

𝑑𝑘

𝑛

𝑘=1

   𝑝, 𝑞, 𝑁, 𝑛, 𝑑𝑘 ∈ ℤ   and 1 < 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛 

2.4 Show that every fraction can be written as an Egyptian fraction 

 in an infinite number of ways. 

 

2.5 Estimate an upper bound for the number of different books, images and movies. 

 

 

 

 

 
2.6 One person owns seven asava horses, another owns nine haya horses and another 

 owns ten camels. Each gives away two animals, one to each of the others. 

 They are then equally well off. Find the price of each animal and the total value of 

 the animals possessed by each person. Assume the value of each animal is an integer. 

 The problem is taken from the Bakshali manuscript. 

 

2.7 Assume you have a method to approximate √𝑥, as in Mesopotamia ~1500 BC. 

 Show a way to approximate 𝑥𝑝/𝑞 where 𝑥 ∈ ℝ+ and 𝑝, 𝑞 ∈ ℤ+(= ℕ1).
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2.8 In Ramayana, a Sanskrit epic poem one of the characters Ravana sends two spies 

 Shuka and Sarana to estimate the strength of the army of monkeys that builds the 

 land bridge to Sri Lanka. According to Sarana their number is 100 crores of mahaughas 

 A crore is 107 and a mahaugha is 1060. How reasonable is Sarana’s estimation? 

 

2.9 Prove Thales’ theorem: 

 If A, B and C are points on a circle 

 with diameter AC then angle B is 90º  

 

2.10 Show the inequalities 𝐻 ≤ 𝐺 ≤ 𝐴 among the Pythagorean means where 

  𝐴 =
𝑥+𝑦

2
 , 𝐺 = √𝑥 ∙ 𝑦 and 𝐻 = (

1 𝑥+1 𝑦⁄⁄

2
)
−1

  with 𝑥, 𝑦 ∈ ℝ+. 

 

2.11 Describe the three regular convex n-polytopes of each dimension ≥ 5. 

 

2.12 Express the fraction 100 000

101 001
 from chapter one as a continued fraction and  

 show that [1; 1,1, … ] equals the golden ratio 𝜑 =
1+√5

2
. 

   𝜑 = 1 +
1

1+
1

1+ 
1

1+ ⋱
 

 

 

2.13 Derive the area of a disk by using a rectangular decomposition. 

 

2.14 Do what Liu Hui failed to do. Derive the volume of a sphere. 

 

2.15 Show that the area of a parabolic segment can be seen as a sum of 

 areas of inscribed triangles that form a geometric series. 

 

2.16 Solve the cattle problem of Archimedes: 

  

 “ Compute, O friend the number of cattle of the sun which once grazed 

 upon the plains of Sicily, divided according to color into four herds, …” 

 They were white, yellow, black and dappled, bulls (𝑊, 𝑌, 𝐵, 𝐷), cows (𝑤, 𝑦, 𝑏, 𝑑). 

 There were more bulls than cows and their numbers were as:  

 

 

 

 

 

   𝑊 +𝐵 is a square number 

   𝐷 + 𝑌 a triangular number  

 

 Find the number of bulls and cows of different color, and the total number of cattle.

𝑊 = (
1

2
+
1

3
)𝐵 + 𝑌

𝐵 = (
1

4
+
1

5
)𝐷 + 𝑌

𝐷 = (
1

6
+
1

7
)𝑊 + 𝑌

 

𝑤 = (
1

3
+
1

4
) (𝐵 + 𝑏)

𝑏 = (
1

4
+
1

5
) (𝐷 + 𝑑)

𝑑 = (
1

5
+
1

6
) (𝑌 + 𝑦)

𝑦 = (
1

6
+
1

7
) (𝑊 + 𝑤)

 

𝐴 = 𝐴1 ⋅∑
2𝑖

8𝑖

∞

1

=
4

3
𝐴1 
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2.17 Show that the ratio of the diagonal to the side 

 in a regular pentagon equals the golden ratio, 

 
𝑏

𝑎
= 𝜑 ≡

1+√5

2
. 

 

Ch.3  Basics 

 
3.1 Show that a logical 𝑛-ary operator 𝑄(𝑃1, … , 𝑃𝑛) with a specified truth table 

 can be given by a formula based on 𝑃𝑖  , ¬ and ∧. 

 𝑃1 𝑃2 ⋯ 𝑃𝑛−1 𝑃𝑛 𝑄 
(2𝑛 − 1)2 1 1 ⋯ 1 1 𝑇1 
(2𝑛 − 2)2 1 1 ⋯ 1 0 𝑇2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 
(1)2 0 0 ⋯ 0 1 𝑇2𝑛−1 
(0)2 0 0 ⋯ 0 0 𝑇2𝑛  

 

3.2 Conway’s arrow notation 𝑐1 → 𝑐2 → ⋯ → 𝑐𝑛 is defined recursively: 

 1. 𝑝 → 𝑞 ≡ 𝑝𝑞   (𝑝, 𝑞 ∈ ℤ+) 

 2. 𝑋 → 1 ≡ 𝑋     (𝑋 is any chained expression) 

 3. 𝑋 → 𝑝 → (𝑞 + 1) ≡ 𝑋 → (𝑋 → (⋯(𝑋 → (𝑋) → 𝑞)⋯ ) → 𝑞) → 𝑞⏟                            
𝑝 repetitions of 𝑋

 

 Knuth’s up-arrow notation 𝑎 ↑𝑛 𝑏 (𝑎, 𝑏, 𝑛 ∈ ℤ+) is defined recursively as: 

 𝑎 ↑ 𝑏 = 𝑎𝑏 
 𝑎 ↑𝑛+1 𝑏 ≡ 𝑎 ↑𝑛 (𝑎 ↑𝑛 (… ↑𝑛 𝑎))⏟              

𝑏 repetitions of 𝑎

 

 Show that: 

 • Conway chained arrow notation is not an iterated binary operator and 

 • 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞 

 • Express 3 → 3 → 3 → 2 in Knuth’s up-arrow notation. 

 

3.3 Show that a sum of powers of degree 𝑝 is a polynomial of degree 𝑝 + 1 and derive the 

 polynomial 𝑆𝑝(𝑛) for 𝑝 = 3 , 𝑝 = 4 and beyond. 

                                                                     𝑆𝑝(𝑛) = ∑𝑘𝑝
𝑛

𝑘=1

 

3.4 Prove that if two sets are countable, totally ordered, dense and 

 without upper and lower bounds then they are order-isomorphic. 

 

3.5 Exercises on cardinality of sets: 

  a) Show that |ℝ| = |(0,1)|. 

  b) Show that |𝒫(𝐴)| > |𝐴| for any set 𝐴. 

  c) Show |𝐴| ≤ |𝐵| and |𝐵| ≤ |𝐴| ⇒ |𝐴| = |𝐵|. 

  d) Find a bijective function ℎ: [0,1] → (0,1).

𝑇𝑖 ∈ {0,1} 
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3.6 Prove the binomial identities. 

(
𝑛
𝑘
) = (

𝑛
𝑛 − 𝑘

) (
𝑛
𝑘
) =

𝑛

𝑘
(
𝑛 − 1
𝑘 − 1

) 

(
𝑛
𝑘
) = (

𝑛 − 1
𝑘 − 1

) + (
𝑛 − 1
𝑘
) (

𝑛
𝑚
)(
𝑚
𝑘
) = (

𝑛
𝑘
) (
𝑛 − 𝑘
𝑚 − 𝑘

) 

∑ (
𝑛
𝑘
) = 2𝑛𝑛

𝑘=0  ∑ (−1)𝑘 (
𝑛
𝑘
) = 0𝑛

𝑘=0  

∑ (
𝑚
𝑟
) = (

𝑛 + 1
𝑟 + 1

)𝑛
𝑚=0  ∑ (

𝑚
𝑘
) (

𝑛
𝑟 − 𝑘

) = (
𝑚 + 𝑛
𝑟

)𝑟
𝑘=0  

3.7 Prove the multinomial theorem: 

          (𝑥1 + 𝑥2 +⋯+ 𝑥𝑚)
𝑛 = ∑ (

𝑛
𝑘1, 𝑘2, … , 𝑘𝑚

) 𝑥1
𝑘1𝑥2

𝑘2 …𝑥𝑚
𝑘𝑚

𝑘1+⋯+𝑘𝑚=𝑛

 

 

3.8 Stirling numbers {
𝑛
𝑘
} of the second kind are defined as the number of ways 

 to partition a set of 𝑛 objects 𝑆𝑛 = {1,2, … , 𝑛} into 𝑘 non-empty subsets. 

 Show that k!{
𝑛
𝑘
} equals the number of surjective functions 𝑓: 𝑆𝑛 → 𝑆𝑘 and that 

{
𝑛
𝑘
} =

1

𝑘!
∑ (−1)𝑘−𝑗 (

𝑘
𝑗
) 𝑗𝑛

𝑘

𝑗 = 0

 

3.9 

 

 

 

 

 

 

 

 

 

 

3.10 How many different messages of length 𝑛 can be built from two symbols of 

 length 1 and length 2? 

 𝑛 = 1 , {     } 

 𝑛 = 2, {         ,         } 

 Compare the growth rate with a geometric sequence. 

 

3.11 Prove Euler-Hierholzer’s theorem from graph theory. A connected graph 

 has an Euler cycle if and only if every node is of even degree. 

3.12 Show that the set of numbers ℚ[√2] ≔ {𝑞1 + 𝑞2√2|𝑞1, 𝑞2 ∈ ℚ} 

 form a field under ordinary addition and multiplication.

According to legend there is a temple with monks and 64 golden disks 

resting on three pillars. Ancient rules dictate that a disk may never 

rest on a smaller disk. When all disks have been moved the world 

will end. They are working day and night moving one disk every 

second. What is the shortest time to move all 64 golden disks? 

Message of length 12 
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0 1 
1 

1 

• 

1 

1 
ℝ 

ℝ2 ℝ3 

3.13 Show equivalence of the different definitions of multiplicity 𝑘 for roots of 𝑃(𝑧). 

 
(𝑧 − 𝛼)𝑘|𝑃(𝑧)

(𝑧 − 𝛼)𝑘+1 ∤ 𝑃(𝑧)
  ⇔   

𝑃(𝑖)(𝛼) = 0  for 𝑖 ∈ {0,1, … , 𝑘 − 1}

𝑃(𝑘)(𝛼) ≠ 0
 

 

3.14 The location of a pirate treasure is described as follows: 

 Go from the gallows to the oak, turn 90 degrees to the left, 

 walk the same distance and put a knife in the ground. Go back 

 to the gallows, walk to the pine, turn 90 degrees to the right, 

 walk the same distance and put another knife in the ground. 

 Midway between the knives, dig and you will find the treasure. 

 Descendants of the pirate found the description. They went to the island and found the pine 

 and the oak but no gallows but still they could find the treasure. Describe where they found it. 

 

3.15 Show 𝑒𝑧𝑒𝑤 = 𝑒𝑧+𝑤 for 𝑧, 𝑤 ∈ ℂ. 

 

3.16 A Graeco-Latin square or an Euler square of order 𝑛 is an arrangement of symbols from 

 G = {𝛼, 𝛽, 𝛾, … } and L = {𝑎, 𝑏, 𝑐, … } with |G|=|L|=𝑛 in such a way that each cell of an 

 𝑛 × 𝑛 square contains an ordered pair (𝑔, 𝑙) ∈ G × L. Every row and every column contain 

 each element of G and each element of L exactly once and no cells contain the same pair. 

 Euler presented the problem for 𝑛 = 6 with G = {officer ranks} and L = {regiments},  

 “the thirty-six officers’ problem”. He constructed Graeco-Latin squares for 𝑛=2𝑘 + 1 and 𝑛=4𝑘 

 Euler conjectured that no Graeco-Latin squares exists for 𝑛=4𝑘 + 2. Show that he was wrong! 

 

 A similar problem with 𝑛=4 and 16 playing cards, G = {A, K, Q, J} and L = {,,,} 

 has an extra constraint. Each diagonal should also contain all four face values and 

 all four suits. How many solutions are there? 

 

3.17 Show that the three altitudes of a triangle 

 have one point in common, (the orthocenter).  

 

3.18 Show that orthocenter, centroid and circumcenter 

 of a non-equilateral triangle are collinear. 

 

3.19. Explore how the radius varies with dimension of a sphere that is 

 squeezed in between spheres centered at integer coordinates ℤ𝑛 in ℝ𝑛. 



6 Mathematical Wanderings 

 

3.20 𝑓: 𝑋 → 𝑌 is a function between two metric spaces with  ‖𝑎 − 𝑏‖ = 𝑑(𝑎, 𝑏) 

 Show that the following definitions of lim
𝑥→𝑥0

𝑓(𝑥) = 𝑦0  are equivalent. 

 A. For every 𝜖 > 0 there is a 𝛿 > 0 such that: 0 < ‖𝑥 − 𝑥0‖𝑋 < 𝛿 ⟹ ‖𝑓(𝑥) − 𝑦0‖𝑌 < 𝜖  

 B. For every neighborhood 𝒱 of 𝑦0there is a punctured neighborhood 𝒰 of 𝑥0 s.t. 𝑓(𝒰) ⊆ 𝒱 

 

3.21 Show that if lim
𝑥→𝑐

𝑓(𝑥) = 𝐴 and lim
𝑥→𝑐

𝑔(𝑥) = 𝐵 then 

𝑎) lim
𝑥→𝑐
(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝐴 ⋅ 𝐵 

𝑏) lim
𝑥→𝑐
(𝑓(𝑥)/𝑔(𝑥)) = 𝐴/𝐵   if 𝐵 ≠ 0 

 

3.22 ? 

 

3.23 Is there a function 𝑓 ∈ C0(ℝ) such that 𝑓 is continuous on ℚ but not on ℝ ∖ ℚ? 

 

3.24 Prove the Archimedean property for ℝ: 

 There is no positive real pair 𝑥, 𝑦 such that 𝑛 ⋅ 𝑥 < 𝑦 for every 𝑛 ∈ ℕ. 

 

3.25 Prove that if 𝑓 is continuous on a compact interval [𝑎, 𝑏] then 

 𝑓 is uniformly continuous on that interval. 

 

3.26. Assume that 𝑓: [𝑎, 𝑏] → [𝑐, 𝑑] is continuous and invertible and that 𝑓−1 is differentiable. 

 Show that: ∫𝑓−1(𝑦)𝑑𝑦 = 𝑦 ⋅ 𝑓−1(𝑦) − 𝐹 ∘ 𝑓−1(𝑦) + 𝐶 

 Give the equation a figurative interpretation, a proof without words. 

 

3.27 Show that the Cantor function also known as the Devil’s staircase c: [0,1] → [0,1] 

 is increasing, surjective, continuous and has a graph of arc length 2. 

 𝑐(𝑥) is defined by: 

 Express 𝑥 in base 3 and replace all digits after the first digit=1 (if any) with zeros and 

 replace all digits=2 after this with digits=1 and reinterpret the sequence as base 2 to get 𝑐(𝑥). 

 

3.28 Show that the area ∫ f(x)
β

α
dx for f(x) = 1/x is unaffected  

 by a rescaling of boundaries [α, β] ↷ [cα, cβ]. 𝛼, 𝛽, 𝑐 ∈ ℝ+ 

 

3.29 Calculate the volume and area formed 

 by rotating y = 1/x around the x-axis 

 for the interval [1,∞) along the x-axis. 

 How much paint would it take to fill it 

 and how much to paint the inside? 
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1 
3.30 Show that the spherical law of cosines 

 cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝐶 

 reduces to the planar law of cosines 

 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝐶 as 𝑎, 𝑏, 𝑐 → 0. 

 

3.31 A pyramid has an equilateral triangle as base, the sides are isosceles triangles and 

 the height of the pyramid equals the distance between the height and the base. 

 What is the angle between two sides? 

 

3.32 Prove the spherical law of cosines 

 cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝐶. 

 

3.33 Calculate the inner angle between adjacent faces 

 in a regular dodecahedron with regular pentagons 

 as faces. (dodecahedron from Greek, do-2 deca-10 12 faces) 

 

3.34 Use the definition of the hyperbolic functions from a hyperbola to show 

 cosh𝐴 =
1

2
(𝑒𝐴 + 𝑒−𝐴) arcosh 𝑥 = ln(𝑥 + √𝑥2 − 1) 

 sinh𝐴 =
1

2
(𝑒𝐴 − 𝑒−𝐴) arsinh 𝑥 = ln(𝑥 + √𝑥2 + 1) 

 

3.35 Derive the Taylor series expansions of ln(x + 1), arctan x and artanh x around x = 0 

 and show that ln 2 = 1 −
1

2
+
1

3
−
1

4
+⋯ and  

π

4
= 1 −

1

3
+
1

5
−
1

7
+⋯. 

 

3.36 Calculate 𝑓𝜔(3) and show that fω2(n) > n → ⋯ → n   ( n n’s) 

 𝑓𝛼 comes from the fast-growing hierarchy. 

  𝑓0(𝑛) = 𝑛 + 1 

  𝑓𝛼+1(𝑛) = 𝑓𝛼
𝑛(𝑛) 

  𝑓𝛼(𝑛) = 𝑓𝛼𝑛(𝑛) when 𝛼 = lim
𝑛
𝛼𝑛 is a limit ordinal. 

 

3.37 A real or complex series ∑ ak
∞
k=0  is said to be absolutely convergent 

 if Sn = ∑ |ak|
n
k=0  is limited ( ∑ |ak|

∞
k=0 = sup{Sn|n ∈ ℕ0} = S ). 

 A series ∑ bk
∞
k=0  that is convergent ( lim

n→∞
(∑ bk

n
k=0 ) ∈ ℂ) without 

 being absolutely convergent is conditionally convergent. Show that: 

 

 I. Absolute convergence ⟹ convergence. 

 II. Sum of absolutely convergent series is independent of  

  the ordering order of the terms. 

 III. The sum of a real conditionally convergent series can attain 

  any real number with an appropriate summation order. 
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𝑝 = −1 ∶ harmonic mean 

𝑝 = 0   ∶ geometric mean 

𝑝 = 1   ∶ arithmetic mean 

𝑝 = 2   ∶ square mean 

3.38. Show that every solution to ℒ(𝑦) = 𝑦(𝑛) + 𝑎𝑛−1𝑦
𝑛−1 +⋯+ 𝑎0𝑦 = 0 

 with characteristic polynomial 𝑙(𝑟) = ∏ (𝑟 − 𝑟𝑘)
𝑛𝑘𝜈

𝑘=1  is of the form 

 𝑦(𝑥) = ∑ 𝑃𝑘(𝑥)𝑒
𝑟𝑘𝑥𝜈

𝑘=1  with deg 𝑃𝑘 < 𝑛𝑘. 

 

3.39 Homogeneous linear recurrence relation with constant coefficients of order 𝑛: 

  ak = c1ak−1 + c2ak−2 +⋯+ cnak−n (∗)    ai, ci, ri ∈ ℂ 

 with characteristic polynomial p(t) = tn − ∑ cit
n−i = ∏ (t − rj)

njν
j=1

n
i=1 , 𝑛1 +⋯+ 𝑛𝜈 = 𝑛 

 Show that ak = ∑ Pj(k)r𝑗
kν

j=1  with polynomials 𝑃𝑗 of degree less than 𝑛𝑗  solves (∗). 

 

3.40 The weighted power mean 𝑀𝑝of 𝑥1, … , 𝑥𝑛 ∈ ℝ
+ 

 with weights 𝑤𝑖 ∈ ℝ
+ and ∑ 𝑤𝑖 = 1

𝑛
𝑖=1  is defined by 

𝑀𝑝(𝑥1, … , 𝑥𝑛) = (∑ 𝑤𝑖𝑥𝑖
𝑝𝑛

𝑖=1 )1 𝑝⁄     for 𝑝 ∈ ℝ ∖ {0} 

𝑀0(𝑥1, … , 𝑥𝑛) = ∏ 𝑥𝑖
𝑤𝑖𝑛

𝑖=1    

𝑀−∞(𝑥1, … , 𝑥𝑛) = min(𝑥1, … , 𝑥𝑛) 

𝑀∞(𝑥1, … , 𝑥𝑛) = max(𝑥1, … , 𝑥𝑛) 

 Show: 

 lim
𝑝→0

𝑀𝑝 = 𝑀0  

 lim
𝑝→−∞

𝑀𝑝 = 𝑀−∞  

 lim
𝑝→∞

𝑀𝑝 = 𝑀∞   

 𝑝 < 𝑞 ⟹ 𝑀𝑝(𝑥1, … , 𝑥𝑛) ≤ 𝑀𝑞(𝑥1, … , 𝑥𝑛)  with equality iff  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 

  ( min ≤ 𝐻.𝑀 ≤ 𝐺.𝑀 ≤ 𝐴.𝑀 ≤ 𝑆.𝑀 ≤ max ) 

 

Ch.4  Return 

 

4.1 Prove 𝑝2|(2𝑝(𝑝−1) − 1) with 𝑝 a prime. 

 

4.2 Show that if a fraction 𝑎/𝑝 with 0 < 𝑎 < 𝑝 and 𝑝 a prime has a decimal expansion  

 with even period 𝑎/𝑝 = 0. 𝑟1…𝑟𝑛𝑟𝑛+1…𝑟2𝑛 then 𝑟𝑖 + 𝑟𝑖+𝑛 = 9 

 

 Example: 
1

17
= 0. 05882352⏟      

𝐴

94117647⏟      
𝐵

      
05882352
94117647

99999999

      𝐴 + 𝐵 = 10𝑛 − 1 
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4.3. There are infinitely many triples of positive integers (𝑎, 𝑏, 𝑐) with gcd(𝑎, 𝑏, 𝑐) = 1 s.t. 

 𝑎 + 𝑏 = 𝑐 and 𝑞(𝑎, 𝑏, 𝑐) > 1 where: 

𝑞(𝑎, 𝑏, 𝑐) =
log(𝑐)

log(rad(𝑎𝑏𝑐))
         , rad (∏𝑝𝑖

𝑘𝑖) =∏𝑝𝑖 

 The abc-conjecture states: 𝜀 > 0 ⇒ only finitely many triples has 𝑞(𝑎, 𝑏, 𝑐) > 1 + 𝜀. 

 If the abc-conjecture is true then there is a maximal value of 𝑞(𝑎, 𝑏, 𝑐). 

 Assume the abc-conjecture and that 𝑞(𝑎, 𝑏, 𝑐) is always less than 2. 

 Show that Fermat’s last theorem 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 with gcd(𝑎, 𝑏, 𝑐) = 1 holds for 𝑛 ≥ 6. 

 ( The abc-conjecture says nothing about the limit of 𝑞(𝑎, 𝑏, 𝑐), biggest known case is 1.63. ) 

Ch.5  History 
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Ch.6  Linear algebra 

 
6.x Show that the inner angle between two adjacent faces 

 in a regular dodecahedron equals 2arctan(𝜑)  

 where 𝜑 ≡ (√5 + 1)/2 is the golden ratio. 

 Solve it by using a matrix for rotation. 
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Appendix C 

C.1 Show that the Liouville numbers 𝕃 are transcendental and that they 

 form an uncountable dense subset of ℝ with Lebesgue measure zero. 

           𝕃 = {𝑥 ∈ ℝ ∖ ℚ ׃ ∀𝑛 ∈ ℕ1 ∃(𝑝, 𝑞) ∈ ℤ × ℕ2 (|𝑥 −
𝑝

𝑞
| <

1

𝑞𝑛
)}     ℕ𝑘 = {𝑘, 𝑘 + 1,… } 

 

 

 

 

C.2 Show that the Bernoulli numbers satisfy 𝐵2𝑘+1 = 0 for 𝑘 ≥ 1. 

 

C.3 Prove that ordinary and binomial convolutions, 

           〈𝑓𝑛〉 ⋆ 〈𝑔𝑛〉 = 〈∑𝑓𝑘𝑔𝑛−𝑘

𝑛

𝑘=0

〉  and 〈𝑓𝑛〉 ⋆
𝑏 〈𝑔𝑛〉 = 〈∑(

𝑛
𝑘
) 𝑓𝑘𝑔𝑛−𝑘

𝑛

𝑘=0

〉 

 are commutative and associative operators with identity 〈1,0,0, … 〉 

 and have a unique inverse for sequences 〈𝑎0, 𝑎1, 𝑎2, … 〉 with 𝑎0 ≠ 0. 

C.4 Use the formula for the resultant, Δ(𝑃) = (−1)𝑛(𝑛−1)/2𝑅(𝑃, 𝑃′)/𝑎𝑛 of  

 𝑃=𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 +⋯+ 𝑎1𝑧 + 𝑎0 = 𝑎𝑛(𝑧 − 𝑟1)(𝑧 − 𝑟2)… (𝑧 − 𝑟𝑛) 

 with 𝑅(𝑃, 𝑄) = |𝑆𝑃,𝑄| where 𝑆𝑃,𝑄 is the Sylvester matrix to find the 

 discriminant of 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 and check that the result 

 is in accordance with the definition ∆(𝑃) ≡ 𝑎𝑛
2𝑛−2 ⋅ ∏ (𝑟𝑖 − 𝑟𝑗)

2
1≤𝑖<𝑗≤𝑛 . 

 

C.5. The resultant 𝑅(𝑓, 𝑔) of two polynomials with coefficients in a field 𝔽 

 where 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎0 and 𝑔(𝑥) = 𝑏𝑚𝑥

𝑚 +⋯+ 𝑏0, 

 with roots 𝛼1, … , 𝛼𝑛 and 𝛽1, … , 𝛽𝑚 in the algebraic closure of 𝔽 

 can be defined in two alternate ways: 

𝟏.   𝑅(𝑓, 𝑔) ≡ 𝑎𝑛
𝑚𝑏𝑚

𝑛 ∏∏(𝛼𝑖 − 𝛽𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

 𝟐.    𝑅(𝑓, 𝑔) ≡

|

|

|

𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 ⋯ 0 0 0
0 𝑎𝑛 𝑎𝑛−1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝑎1 𝑎0 0
0 0 0 ⋯ 𝑎2 𝑎1 𝑎0
𝑏𝑚 𝑏𝑚−1 𝑏𝑚−2 ⋯ 0 0 0
0 𝑏𝑚 𝑏𝑚−1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝑏1 𝑏0 0
0 0 0 ⋯ 𝑏2 𝑏1 𝑏0

|

|

|

 

 

Show that the two definitions are equivalent. 

𝑥 𝑥 −
1

𝑞1
 𝑥 +

1

𝑞1
 𝑥 +

1

𝑞𝑛
𝑛

 𝑥 −
1

𝑞𝑛
𝑛

 

𝑝1
𝑞1

 
𝑝𝑛
𝑞𝑛
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Hints 

Ch.1  Introduction 

 
1.1 Calculate the distance between successive layers and make a regular  

 tiling of each layer. The answer is 𝜋 (3√2)⁄  

 

1.2 Extend the algorithm given for long division. 

 

Ch.2  Origins 

 
2.1 Read about representation and base in chapter 3. 

 

2.2 Look at how the series 𝑎𝑘 is generated in a coordinate system with 

 two graphs drawn: 𝑦 = (𝑥 + 𝑁 𝑥)/2⁄  and 𝑦 = 𝑥, 

 or study the Newton-Raphson method for finding roots. 

 

2.3 Use the greedy algorithm. 

 

2.4 Derive a new Egyptian fraction from an existing one. 

 

2.5 Assume a book is a string of symbols from a list of 100 symbols on 

 no more than 1000 pages. An image is roughly 1000×1000 pixel, each 

 pixel described by a red, green and blue intensity between 0 and FF16. 

 Assume a movie is less than 100 fps and lasts no more than three hours. 

 

2.6 Express the unknown prices in terms of their equal wealth. 

 

2.7 Use a binary decimal expansion. 

 

2.8. Estimate the total volume, mass or area of the monkey army 

 compared to the earth op to the land bridge to Sri Lanka. 

 

2.9 Draw an extra radius. 
 

2.10 Use the geometrical constructions of Pythagorean means on page 47 in MW. 

 

2.11 Look at the figures on the bottom of page 52 in MW. 

 

2.12 Look at page 60 in MW.
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2.13 Use integration.  

 

 

2.14 Use cylindrical shells.  
 

2.15 Old points are the mean  

 to get new points.  

 

2.16 Use a program like 

 Mathematica or MATLAB 

 

 

2.17 Prove and use Ptolemy’s theorem 

 for a cyclic quadrilateral: 

 |AC̅̅̅̅ | ⋅ |𝐵𝐷̅̅ ̅̅ | = |AB̅̅ ̅̅ | ⋅ |𝐶𝐷̅̅ ̅̅ | + |AD̅̅ ̅̅ | ⋅ |𝐵𝐶̅̅ ̅̅ | 
 

 

Ch.3  Basics 

 

3.2 Show that 𝑎 → 𝑏 → 𝑐 is neither left-associative (𝑎 → 𝑏) → 𝑐 nor 

 right-associative 𝑎 → (𝑏 → 𝑐). 

 

3.18 Draw a midpoint triangle.  

 

3.19 Use the space diagonal. 

 

3.x Look at the cross-section of the dodecahedron.
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Solutions 

 

1.1 Calculate the proportion of space occupied 

by spheres in the regular packing. 

 

The problem is scale invariant so we can assume spheres of radius one. 

Tile the plane with equilateral triangles. 

The distance between planes equals the height in a tetrahedron with side two. 

 

 

 12 + (√3 − 𝑥)
2
= 𝑥2

𝑥 = 2 √3⁄

 4/3 + ℎ2 = 4

ℎ = 2√2 √3⁄

 

 

Space is tiled by prisms of base area √3 and height 2√2/√3, the volume is 2√2. 

Each prism contains spheres of volume 3 ∙
1

6
∙
4𝜋13

3
= 2𝜋/3 

Proportion occupied by spheres: 
𝜋

3√2
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1.2 Write an algorithm or program to derive the period of a fraction. 

 
Algorithm 

 
Read data, P and Q   (P/Q) 

0→J 

Initiate N, R and lists NList, RList 

If  R=0 

  Print “Q divides P” 

Else 

  False→Repeat 

  While R0 and not Repet 

  J+1→J 

  Initiate N, R and lists NList, RList 

  If  R0  // Test if R is previous in list 

    1→I 

    False → Repeat 

    While I<J and L_R(I)R 

      I+1→I 

    If I<J 

      True → Repeat 

If R=0 

  Print “No repetition P/Q=” , P/Q 

Else 

  Print “Integer part= “, L_N(1) 

  Print “Initial decimals: “ , L_N( 2..I ) 

  Print “Repeat digits: “, L_N( I+1..J) 

  Print “Period equals “ , J-I 
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Algorithm for calculator 
 

TI-83 Program:Period 

 

ClrList L_N,L_R 

Clrhome 

Input “NUMERATOR(P)”, P 

Input “DENOMINATOR(Q)”, Q 

1→J 

int(P/Q)→N 

P-NQ→R 

N→L_N(J) 

R→L_R(J) 

If R=0 

Then 

Disp “Q DIVIDES P” 

Else 

0→A (A Boolean: is R contained in R_List) 

While R0 and not(A) 

J+1→J 

R*10→R 

int(R/Q)→N 

R-N*Q→R 

N→L_N(J) 

R→L_R(J) 

If R0 

Then 

1→I 

0→A 

While I<J and L_R(I)R 

I+1→I 

End 

If I<J: 1→A 

End 

End 

If R=0 

Then 

Disp “NO REPEAT P/Q= “,P/Q 

Else 

Disp “INTEGER PART= “, L_N(1) 

If I>1 

Then 

Disp “INITIAL DECIMALS: ”, seq(L_N(X),X,2,I) 

End 

Disp “PERIOD IS “,J-I 

Disp “REPEAT DIGITS: ”,seq(L_N(X),X,I+1,J) 

End 

End 
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2.1 Which fractions have a finite sexagesimal expansion? 

 Calculate the sexagesimal expansion of the first  

 sexagesimally periodic fraction in the series (1 𝑛⁄ )𝑛=1
∞ . 

 

Assume a positive fraction 
𝑝

𝑞
 with p and q without common divisor (𝑝, 𝑞) = 1. 

𝑝

𝑞
 has finite expansion in base B ⟹ 

𝑝

𝑞
= 𝑁 +∑𝑎𝑘 ⋅

1

𝐵𝑘

𝑛

𝑘=1

   with n < ∞   ⟹ 

𝑝

𝑞
⋅ 𝐵𝑛 = 𝑀   for some   n,M ∈ ℤ 

 

If 𝑞 has some prime factor not in B this is not possible ⇒ infinite expansion. 

If 𝑞 has no prime factor not in B, we can write 
𝑝

𝑞
⋅ 𝐵𝑛 = 𝑀 for some 𝑛,𝑀 ∈ ℤ ⇒ finite expansion. 

For sexagesimal expansion 𝐵 = 22 ⋅ 3 ⋅ 5. 

∴ Fractions 𝑝/𝑞 with (𝑝, 𝑞) = 1 have finite sexagesimal expansion if 𝑞 = 2𝑎3𝑏5𝑐 with 𝑎, 𝑏, 𝑐 ∈ ℕ0 

 

The first fraction with an infinite expansion in the series (1 𝑛⁄ )𝑛=1
∞  will be 1/7. 

The long division in chapter one shows that for all bases: 

If  𝑝/𝑞 has infinite expansion it will be periodic with period less than 𝑞. 

 

 0. 8 34 17  

7 1. 0 0 0  

 0     

 1 0   (=60) 

  56    

  4 0  (=240) 

  3 58   

   2 0 (=120) 

   1 59  

    1  

1

7
= 0. 8  34  17̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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2.2 Pick a number 𝑎1 > 0 and let 𝑎𝑘+1 =
𝑎𝑘+𝑁 𝑎𝑘⁄

2
. Show that lim

𝑘→∞
𝑎𝑘 = √𝑁 . 

 This could be the method behind the approximation on YBC 7289. 

 
 

If 𝑎1 = √𝑁 then 𝑎𝑘 = √𝑁 for all k so lim
𝑘→∞

𝑎𝑘 = √𝑁. Assume 𝑎𝑘 ≠ √𝑁. 

It is clear that (𝑎𝑘)𝑘=2
∞  is a strictly decreasing sequence bounded from below by √𝑁. 

The limit must exist so lim
𝑘→∞

𝑎𝑘 = 𝑎 with 𝑎 ≥ √𝑁. 

 

Assume > √𝑁  

lim
𝜀→0

[(𝑎 + 𝜀) − 𝑓(𝑎 + 𝜀)]⏟            
𝛿𝜀

=
𝑎

2
−

𝑁

2𝑎
= 𝛿 > 0. 

If we make k large enough we get a contradiction 𝑎𝑘 < 𝑎 so  𝑎 ≯ √𝑁. 

∴ lim
𝑘→∞

𝑎𝑘 = √𝑁  

 

Alternative solution: 

Let 𝑓(𝑥) = 𝑥2 − 𝑁, with root √𝑁. 

Apply Newton-Raphson method to find the root of 𝑓(𝑥). 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

= 𝑥𝑛 −
𝑥𝑛
2 −𝑁

2𝑥𝑛

=
𝑥𝑛 + 𝑁/𝑥𝑛

2

 

It is not known how the Babylonians found their 

approximation to √2  on the clay tablet YBC 7289. 

Maybe they used 𝑎1 = 1.5 and 𝑎𝑘+1 =
𝑎𝑘+2 𝑎𝑘⁄

2
 , three iterations would be enough.

  𝑓(𝑥) = 1

2
(𝑥 + 𝑁 𝑥)⁄  

  𝑓′(𝑥) = 1

2
(1 − 𝑁 𝑥2⁄ ) 

 𝐼𝑓 𝑥 < √𝑁 𝐼𝑓 𝑥 = √𝑁 𝐼𝑓 𝑥 > √𝑁 

 𝑓(𝑥) > 𝑥 𝑓(𝑥) = 𝑥 𝑓(𝑥) < 𝑥 

 𝑓′(𝑥) < 0 𝑓′(𝑥) = 0 𝑓′(𝑥) > 0 

 

𝑎 + 𝜀 √𝑁 𝑎 𝑓(𝑎 + 𝜀) 

𝛿𝜀 
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2.3 Show that every fraction can be written as an Egyptian fraction: 

 
𝑝

𝑞
= 𝑁 + ∑

1

𝑑𝑘

𝑛
𝑘=1    𝑝, 𝑞, 𝑁, 𝑛, 𝑑𝑘 ∈ ℤ   and 1 < 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛 

 

Let us assume that 𝑝, 𝑞 > 0 and 𝑝 < 𝑞 and concentrate on showing: 

𝑝

𝑞
=∑

1

𝑑𝑘

𝑛

𝑘=1

   with    1 < 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛 

If 𝑝 = 1 we are done. 

If 𝑝 > 1, use the greedy algorithm which means, 

pick the largest possible unit fraction, and keep doing that to what remains.   

𝑝

𝑞
=

1

⌈𝑞/𝑝⌉
+
(−𝑞)mod 𝑝

𝑞⌈𝑞/𝑝⌉
 

 

Right-hand side (RHS) equals: 

 
𝑞+(−𝑞)mod𝑝

𝑞⌈𝑞/𝑝⌉
=
𝑞+(−𝑞)+⌈𝑞/𝑝⌉𝑝

𝑞⌈𝑞/𝑝⌉
=
𝑝

𝑞
= 𝐿𝐻𝑆 

0 ≤ (−𝑞)mod 𝑝 < p 

If (−𝑞)mod𝑝 = 0, then we are done. 

If not we can reapply the expansion with a strictly lower numerator so 

the process will end in a finite number of steps. 

 

Show 𝑑𝑛+1 > 𝑑𝑛: 

Assume not, then 
1

𝑑𝑛
+

1

𝑑𝑛+1
≥

2

𝑑𝑛
 but  

1

𝑑𝑛−1
≤

2

𝑑𝑛
 if 𝑑𝑛 ≥ 2. So we could have had 𝑑𝑛 − 1 instead of 𝑑𝑛. 

𝑑𝑛 must be strictly increasing. 

 

For a general fraction 
𝑝

𝑞
 we get: 

𝑝

𝑞
= 𝑁 +∑

1

𝑑𝑘

𝑛

𝑘=1

     with    1 < 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛 

Ex: −5 mod 3 ∈ {−5,−5 + 3,−5 + 2 ⋅ 3,… } 

(−𝑞)mod 𝑝 = −𝑞 + 𝑛 ⋅ 𝑝  where 

 𝑛 ∈ ℕ1 = {1,2,… } and − 𝑞 + 𝑛 ⋅ 𝑝 ∈ {0,1,… , (𝑝 − 1)} 

⟹ 𝑛 = ⌈𝑞/𝑝⌉  
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2.4 Show that every fraction 
𝑝

𝑞
 (0 < 𝑝 < 𝑞) can be written as an Egyptian fraction 

 in an infinite number of ways. 

 

 

Exercise 2.3 shows that there is at least one decomposition into Egyptian fraction 

 
𝑝

𝑞
= ∑ 1/𝑑𝑘

𝑛
𝑘=1   (1 < 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛) 

If the number is finite we can put them in a list and choose a 

decomposition with a maximal denominator 𝐷𝑛. 

𝑝

𝑞
=∑

1

𝐷𝑘

𝑛

𝑘=1

   (1 < 𝐷1 < 𝐷2 < ⋯ < 𝐷𝑛) 

1 =
1

2
+
1

3
+
1

6
⟹
𝑝

𝑞
= ∑

1

𝐷𝑘

𝑛−1

𝑘=1

+
1/2 + 1/3 + 1/6

𝐷𝑛

=∑
1

𝐷𝑘
+

1

2𝐷𝑛
+

1

3𝐷𝑛
+

1

6𝐷𝑛

𝑛−1

𝑘=1

 

This is a new decomposition not in the list since 6𝐷𝑛 > 𝐷𝑛 so the list can’t be finite. 

∴ Every fraction can be divided into Egyptian fractions in an infinite number of ways. 
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2.5 Estimate an upper bound for the number of different books, images and movies. 

 

 

 

 

 

 

 

Let us assume that a book is identified by a string of symbols taken from a list of 100 symbols 

written on 1000 pages with 40 rows and 70 symbols per row. 

All books of shorter length are effectively included since a blank is part of our list of symbols. 

 

Total number of combinations for books: 1001000⋅40⋅70 = (102)280 000 = 10560 000 = 105.6⋅10
5
 

 

The number is quite a bit larger than a googol 10100, but much smaller than a googolplex 1010
100

. 

 

It exceeds the biggest number in the old Greek nomenclature for numbers, a myriad myriads 108,  

but it is far smaller than the biggest number named by Archimedes, 108⋅10
16

 in The Sand Reckoner. 

 

It is puny compared to “the incalculable” 107⋅2
122
≈ 103.7⋅10

37
 from the Mahayana Buddhist scripture  

Buddha-avatamsaka-nama-vaipulya-sutra (Flower Garland Sutra of Great Universal Buddha)  

(Japanese: ふかせつふかせつてん hukasetsuhukasetsuten , Chinese: 不可說不可說轉 Bukeshuo bukeshuo zhuan ) 

 

 

Let us assume that an image has a size of 1000 × 1000 pixels and that the color of each pixel is  

described by three numbers for red, green and blue intensity ranging from 0 to FF16=255 which gives 

28⋅3 different color values for each pixel. 

 

Total number of combinations for images: (224)10
6
= 10log 2⋅24⋅10

6
≈ 107.2⋅10

6
 

 

In round figures the same number as for books. 

 

Let us assume that a movie is a sequence of images 1000 × 1000 pixels, 100 frames per second (fps), 

going on for no longer than three hours and that there is no sound. 

(Standard film format 24fps, TV up to 100fps, 300fps have been tested for sport to enable high quality slow motion capture) 

 

Total number of combinations for movies:  ((224)(10
6))3⋅3600⋅100  ≈ 107.8⋅10

12
 

 

Still much smaller than the googolplex, the maximum in The Sand Reckoner and “the incalculable”. 
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2.6 One person owns seven asava horses, another owns nine haya horses and another 

 owns ten camels. Each gives away two animals, one to each of the others. 

 They are then equally well off. Find the price of each animal and the total value of 

 the animals possessed by each person. Assume the value of each animal is an integer, 

 in a suitable currency called coin. (The problem is taken from the Bakshali manuscript.) 

 

 

Assume: 

Asava horse: 𝑥 coins
Haya horse: 𝑦 coins

Camel: 𝑧 coins

  → 5𝑥 + 𝑦 + 𝑧 = 𝑥 + 7𝑦 + 𝑧 = 𝑥 + 𝑦 + 8𝑧 = 𝑤 

 

Express 𝑥, 𝑦 and 𝑧 in terms of the common wealth 𝑤. 

𝑥 = 𝑎𝑤
𝑦 = 𝑏𝑤
𝑧 = 𝑐𝑤

→ {
5𝑎 + 𝑏 + 𝑐 = 1
𝑎 + 7𝑏 + 𝑐 = 1
𝑎 + 𝑏 + 8𝑐 = 1

⇔ {

𝑎 = 21/131
𝑏 = 14/131
𝑐 = 12/131

⇔ {

𝑥 = 21𝑤/131
𝑦 = 14𝑤/131
𝑧 = 12𝑤/131

 

 

𝑥, 𝑦, 𝑧 ∈ ℤ+  ⟹ 𝑤 = 131𝑛   , 𝑛 ∈ {1,2,3… }  

 

Asava horse: 21𝑛 coins
Haya horse: 14𝑛 coins

Camel: 12𝑛 coins
After donations, they each own: 131𝑛 coins

  

 

(The solution given in the Bakhshali manuscript corresponds to 𝑛 = 2.) 

 

 

2.7 Assume you have a method to approximate √𝑥, as in Mesopotamia ~1500 BC 

 Show a way to approximate 𝑥𝑝/𝑞 where 𝑥 ∈ ℝ+ and 𝑝, 𝑞 ∈ ℤ+(= ℕ1) 

 

 

𝑥𝑝/𝑞 = 𝑥𝑁+∑ 𝑑𝑛⋅2
−𝑛∞

𝑛=1 = 𝑥𝑁 ⋅ √𝑥
𝑑1
⋅ √√𝑥

𝑑2

⋅ √√√𝑥

𝑑3

⋅ … = 𝑥𝑁 ⋅ ∏ 𝑓𝑛(𝑥)

{𝑛|𝑑𝑛 = 1}

     with  f(x) = √𝑥 

 

 

 

Having an approximation for √𝑥 we can approximate √√𝑥 and so on. 

From a numerical point of view the method is not very good due to slow convergence and 

accumulating errors in repeated square root approximations to calculate 𝑥1/2
𝑛
. 

𝑓1(𝑥) = √𝑥 

𝑓𝑛(𝑥) = 𝑓(𝑓𝑛−1(𝑥)) 

𝑁 = ⌊𝑝/𝑞⌋ ∈ ℕ0 

𝑑𝑛 ∈ {0,1} 
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2.8 In Ramayana, a Sanskrit epic poem one of the characters Ravana sends two spies 

 Shuka and Sarana to estimate the strength of the army of monkeys that builds the 

 land bridge to Sri Lanka. According to Sarana their number is 100 crores of mahaughas 

 A crore is 107 and a mahaugha is 1060. How reasonable is Sarana’s estimation? 

 

Assume a monkey weighs 50 kg and has a volume of 50 kg (1 kg⁄ ⋅ dm−3) = 0.05 m3 

 

 Mass of 1069 monkeys: 5.0 ⋅ 1070 kg Volume of 1069 monkeys: 5.0 ⋅ 1067m3 

 Mass of earth: 6.0 ⋅ 1024 kg Volume of earth: 1.1 ⋅ 1021 m3 

 Mass of observable universe: 3.4 ⋅ 1054 kg Volume of observable universe: 3.4 ⋅ 1080 m3 

 

Assume that the Sri Lanka land bridge is 100 km long and 100 meter wide. 

Putting all the monkeys on the bridge, and standing on top of each other the monkeys would 

form a wall higher than 5.0 ⋅ 1067m3/ (100 km ⋅ 100m) = 5.0 ⋅ 1060 m. 

 

The distance to the moon is 4 ⋅ 108 m and the diameter of observable universe is 9⋅ 1026 m. 

It seems that enormous numbers in Hindu and Buddhist texts were not used for calculations but 

more as a way of expressing that some quantity or timespan was really big. 

 

 

2.9 Prove Thales’ theorem: 

 If A, B and C are points on a circle 

 with diameter AC then angle B is 90º  

 

 

 

 

 

 

 

 

 

Show that sum of angles in a plane triangle is 180°. 

This is not true for a triangle on a sphere so we need 

Euclidean geometry and the fifth axiom. 

 

Draw radius OB, |OA| = |OB| = |OC| = 𝑟  

We get two isosceles triangles with base angles 𝛼 and 𝛽. 

Assuming the sum of angles of a triangle to be 180° we get: 

𝛼 + 𝛽 + (𝛼 + 𝛽) = 180° 

                    𝛼 + 𝛽 = 90°     ⟹    ∠𝐴𝐵𝐶 = 90°  

Draw a line through C parallel to AB. 

Corresponding and opposing angles are equal. 

𝛼 + 𝛽 + 𝛾  corresponds to half a turn. 

𝛼 + 𝛽 + 𝛾 = 180° 
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2.10 Show the inequalities 𝐻 ≤ 𝐺 ≤ 𝐴 among the Pythagorean means where 

  𝐴 =
𝑥+𝑦

2
 , 𝐺 = √𝑥 ∙ 𝑦 and 𝐻 = (

1 𝑥+1 𝑦⁄⁄

2
)
−1

  with 𝑥, 𝑦 ∈ ℝ+. 

From the geometrical construction it is clear that 

H ≤ G 

Since G is the hypotenuse in a triangle with side H. 

G ≤ A 

Since the diameter is longer than a chord of a circle. 

 

The geometrical construction is correct since: 

A is constructed from the bisection of a segment of length 𝑥 + 𝑦 is clearly equal to (𝑥 + 𝑦) 2⁄ . 

 

OBC gives: 

G2 + (𝑥 −
𝑥+𝑦

2
)
2
= (

𝑥+𝑦

2
)
2

 

G2 = (
𝑥+𝑦

2
)
2
− (

𝑥−𝑦

2
)
2

 

G = √𝑥 ∙ 𝑦 

 

OBC ∼BCD  (Similar triangles, one is a translated, scaled and in this case reflected version of the other) 

A

G
=
𝐺

𝐻
  ⟹ H =

G2

A
=

𝑥𝑦

(𝑥 + 𝑦) 2⁄
 ⟹ H−1 =

𝑥 + 𝑦

2𝑥𝑦
       ⟹         H = (

1 𝑥⁄ + 1 𝑦⁄

2
)

−1

 

 

From the construction it is also clear that: 

A = G if and only if 𝑥 = 𝑦 

G = H if and only if 𝑥 = 𝑦 

A 

O 

B 

C 

D 
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2.11 Describe the three regular convex n-polytopes of each dimension ≥ 5.  

 

Assuming as stated in the text on polygons and polyhedra that there are only three regular 

convex n-polytopes for each dimension 𝑛 ≥ 5 we only need to find three examples in each 

dimension. We can do this by induction, starting with 𝑛 = 1 and the unit segment. 

Case I  (𝑛 = 2) 

Locate a point at the center by bisection and move it perpendicularly into 

the next dimension until all vertices are equally separated to get an equi-lateral 

triangle aka a regular 2-simplex with 3 vertices (V), 3 edges (E) and 1 face (F). 

Case II (𝑛 = 2) 

As above but copy the segment and sweep it along one unit to get a square 

with V=4, E=4, F=1. 

Case I (𝑛 = 3) 

Along the axis used used when n=2 there is a point where the distance to all 

three vertices are equal. Extend this point into a 3rd dimension until all four 

vertices are at equal distances. The convex hull of the vertices is a volume or  

cell(C) swept out by a triangle shrinking to a point. It is a regular tetrahedron 

also known as a regular 3-simplex with V=4, E=6, F=4, C=1. 

Case II (𝑛 = 3) 

Halfway along the axis used when n=2 there is a point whith distances to all 

four vertices equal. Copy the square and move it one unit in a 3rd dimension. 

It will sweep out a cube with V=8, E=12, F=6, C=1. 

The same procedures works iteratively to get n-dimensional n-polytopes. 

The case I n-polytope is a regular n-simplex. The case II n-polytope is  

a hypercube or n-cube, alternative names are tesseract, penteract etc. 

To get the number of elements in each case the procedures give iterative 

formulas for em,n  the number of m-dimenional elements in n dimensions. 

Dimension Term 

0 Vertex 

1 Edge 

2 Face 

3 Cell 

… … 

n-1 Facet 

n Body 

 Case I, n-simplices 

 𝑒𝑚,𝑛 = 𝑒𝑚,𝑛−1 + 𝑒𝑚−1,𝑛−1 with 𝑒0,𝑛 = 𝑛 + 1  and 𝑒𝑚,0 = 0 for 𝑚 > 0 

n-simplex 
 Vertex 

0 
Edge 

1 
Face 

2 
Cell 

3 
e4,n 

4 

 0 1 0 0 0 0 

 1 2 1 0 0 0 

 2 3 3 1 0 0 

 3 4 6 4 1 0 

5-cell 4 5 10 10 5 1 

etc n n+1 (
n + 1
2
) (

n + 1
3
) (

n + 1
4
) (

n + 1
5
) 

 

m 

n 

(
𝐴
𝐵
) =

𝐴!

𝐵! (𝐴 − 𝐵)!
 

The number of ways 

to choose B objects 

from a collection of 

A objects. 
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The terms 𝑒𝑚,𝑛 in case I follow the pattern of Pascals triangle and case II elements resemble 

binomial coefficients used when expanding (𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑘
) 𝑥𝑘𝑦𝑛−𝑘𝑛

𝑘=0  

 

Case I, comparing with expansion of (1 − 1)𝑛 = ∑ (
𝑛
𝑘
) (−1)𝑛−𝑘𝑛

𝑘=0  gives: 

{
𝑛 even: 0 = 1 − V + E − F +⋯+ 𝐵
𝑛 odd ∶ 0 = −1 + 𝑉 − 𝐸 + 𝐹 −⋯+ 𝐵

  ⟹  V − E + F − C +⋯± B = 1 

 

Case II, comparing with expansion (1 − 2)𝑛 = ∑ (
𝑛
𝑘
) (−2)𝑛−𝑘𝑛

𝑘=0  gives 

{
𝑛 even: 1 = 𝑉 − E + F +⋯+ 𝐵
𝑛 odd ∶ −1 = −𝑉 + 𝐸 − 𝐹 +⋯+ 𝐵

  ⟹  V − E + F − C +⋯± B = 1 

 

In two dimensions with   B = F = 1: V − E = 0 

In three dimensions with B = C = 1: V − E + F = 2 

 

𝜒 = 𝑉 − 𝐸 + 𝐹 is called the Euler characteristic for a polyhedron. 

It can be generalized to surfaces with general topologies of lower and higher dimensions, 

both orientable and non-orientables objects. Each geometrical type has its own value of 𝜒. 

     

𝜒 = 2 𝜒 = 2 𝜒 = 0 𝜒 = −2 𝜒 = 0 

 

The third regular convex n-polytope, the missing case III is the dual of case II with a vertex 

in the centre of each n-cube facet. The vertex coordinates are ±1 along each cordinate axis, 

like a cross, the body is the convex hull of these vertices and their names are cross-polytopes. 

 Case II, n-cubes 

 𝑒𝑚,𝑛 = 2𝑒𝑚,𝑛−1 + 𝑒𝑚−1,𝑛−1 with 𝑒0,𝑛 = 2
𝑛  and 𝑒𝑚,0 = 0 for 𝑚 > 0 

n-cube 
 Vertex 

0 
Edge 

1 
Face 

2 
Cell 

3 
e4,n 

4 

 0 1 0 0 0 0 

 1 2 1 0 0 0 

 2 4 4 1 0 0 

 3 8 12 6 1 0 

tesseract 4 16 32 24 8 1 

etc n 2n (
𝑛
1
)2𝑛−1 (

𝑛
2
)2𝑛−2 (

𝑛
3
)2𝑛−3 (

𝑛
4
)2𝑛−4 

 

m 
n 
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2.12 Express the fraction 100 000

101 001
 from chapter one as a continued fraction and  

 show that [1; 1,1, … ] = 1 +
1

1+
1

1+ 
1

1+ ⋱
 

 equals the golden ratio 𝜑 =
1+√5

2
. 

Euclid’s algorithm to find GCD(100 000,101 001) gives: 

 

 

 

 

 

 

1 +
1

1+
1

1+ 
1

1+ ⋱
 

 is defined as the limit of convergents {𝑐𝑘}𝑘∈ℕ (truncated continued fractions) 

 

 

 

 

 

 

 

 

Proof by induction: 𝑐0 = 𝐹2 𝐹1⁄ . Assume 𝑐𝑛 = 𝐹𝑛+2 𝐹𝑛+1⁄  

 

𝑐𝑛+1 = 1 +
1

1+
  
1

1+
…
1

1+
  
1

1⏟      
𝑛+1

= 1 +
1

1+(𝑐𝑛−1)
= 1 +

𝐹𝑛+1
𝐹𝑛+2

=
𝐹𝑛+1+𝐹𝑛+2

𝐹𝑛+2
=
𝐹𝑛+3
𝐹𝑛+2

 

 

 

𝑛 0 1 2 3 4
𝑐𝑛+1 − 𝑐𝑛

1

1
− 
1

2

1

2⋅3
− 
1

3⋅5

1

5⋅8

 

 

Proof by induction: 𝑐1 − 𝑐0 =
1

𝐹1𝐹2
. Assume 𝑐𝑛+1 − 𝑐𝑛 =

(−1)𝑛

𝐹𝑛+1⋅𝐹𝑛+2
 

 

𝑐𝑛+2 − 𝑐𝑛+1 =
𝐹𝑛+4
𝐹𝑛+3

 − 
𝐹𝑛+3
𝐹𝑛+2

  = 
𝐹𝑛+2
𝐹𝑛+3

 − 
𝐹𝑛+1
𝐹𝑛+2

=
1

𝑐𝑛+1
−

1

𝑐𝑛
=
𝑐𝑛−𝑐𝑛+1

𝑐𝑛⋅𝑐𝑛+1
=
(−1)𝑛+1 (𝐹𝑛+1𝐹𝑛+2)⁄

𝐹𝑛+3 𝐹𝑛+1⁄
=

(−1)𝑛+1

𝐹𝑛+2𝐹𝑛+3
  

 

𝑐1 > 𝑐3 > 𝑐5 > ⋯ > 𝑐4 > 𝑐2 > 𝑐0  ,  
1

𝐹𝑛+2𝐹𝑛+3
→ 0  as 𝑛 → ∞     ⟹ 

{𝑐𝑘}𝑘∈ℕ will oscillate towards a well-defined limit, call it 𝑥. 

 

𝑥 must satisfy: 

  

𝑥 = 1 +
1

𝑥

𝑥 =
1 ± √5

2

 

100 000 = 0 ⋅ 101 001 + 100 000 𝑞0 = 0
101 001 = 1 ⋅ 100 000 + 1 001 𝑞1 = 1
100 000 = 99 ⋅ 1 001 + 901 𝑞2 = 99
1 001 = 1 ⋅ 901 + 100 𝑞3 = 1
901 = 9 ⋅ 100 + 1 𝑞4 = 9
100 = 100 ⋅ 1 + 0 𝑞5 = 100

 

100 000

101 001
=

1

1 +
1

99 +
1

1 +
1

9 +
1
100

= [0; 1,99,1,9,100] 

 
𝑐𝑛 = 𝑎0 +

1

𝑎1 +
1

𝑎2 +
1

⋱ +
1
𝑎𝑛

= 𝑎0 + (𝑎1 + (𝑎2 + (…(𝑎𝑛−1 + 𝑎𝑛
−1)−1…)−1)−1)−1 = 𝑎0 +∑

1

𝑎𝑖

𝑛

𝑖=1

 K 
= 𝑎0 +

1

𝑎1 +
 
1

𝑎2 +
⋯

1

𝑎𝑛−1 +
 
1

𝑎𝑛
= [𝑎0; 𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛] 

𝑛 0 1 2 3 4

𝑐𝑛
1

1

2

1

3

2

5

3

8

5

  Fibonacci?  𝑐𝑛 =
𝐹𝑛+2

𝐹𝑛+1
  with 𝐹0 = 0 ,  𝐹1 = 1 and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

Looks like: 𝑐𝑛+1 − 𝑐𝑛 =
(−1)𝑛

𝐹𝑛+1⋅𝐹𝑛+2
 

1 +
1

1 +
1

1 + 1
1+ ⋱

 

=  
1 + √5

2
= 𝜑 (𝑡ℎ𝑒 𝑔𝑜𝑙𝑑𝑒𝑛 𝑟𝑎𝑡𝑖𝑜) ⟹ 
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2.13 Derive the area of a disk of radius 𝑟 by using rectangular decomposition. 

 

Riemann integration gives the area using decomposition of the 

disk with rectangles. The lower limit of areas covering the disk 

and upper limit of areas inside the disk is shown to coincide. 

Using up-down and left-right symmetry of the disk we get: 

 

Area = 4∫√𝑅2 − 𝑥2𝑑𝑥

𝑟

0

[

𝑥 = 𝑟𝑢
𝑑𝑥

𝑑𝑢
= 𝑟

]

= 4𝑟2∫√1 − 𝑢2𝑑𝑢

1

0

[
𝑢 = sin 𝜃
𝑑𝑢

𝑑𝜃
= cos 𝜃

]

= 4𝑟2∫ cos2 𝜃 𝑑𝜃

𝜋/2

0

= 4𝑟2∫
1 + cos 2𝜃

2
𝑑𝜃

𝜋/2

0

= 4𝑟2 [
𝜃

2
+
sin 2𝜃

4
]
0

𝜋/2

= 𝜋𝑟2

 

 

The Riemann integral with variable substitution and primitive functions of trigonometric functions 

is presented in chapter three and there is no explicit or implicit use of what we set out to prove 𝐴 = 𝜋𝑟2.

Circle of radius R 

𝑥2 + 𝑦2 = 𝑅2 

𝑦 = √𝑅2 − 𝑥2 
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2.14 Derive the volume of a sphere. 

 

 

 
Integrating over surface area of open cylinders: 

Surface area: 2𝑥 ⋅ 𝜋 ⋅ 2𝑦 

Volume of sphere = 4𝜋 ∫ 𝑥𝑦𝑑𝑥 [

𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

𝑑𝑥

𝑑𝜃
= −𝑟 sin 𝜃

]
𝑟

0
 

  = 4𝜋𝑟3 ∫ (cos 𝜃 − cos3 𝜃)
𝜋/2

0
𝑑𝜃 

 = 𝜋𝑟3 ∫ (cos 𝜃 − cos 3𝜃)
𝜋/2

0
𝑑𝜃 

  = 4𝜋𝑟3/3 

4cos3(𝛼/3) − 3 cos(𝛼/3) = cos𝛼  

 

Trisecting a general angle 𝛼 requires a solution to a cubic equation, but ruler-and-compass 

construction starting from given points in the complex plane can only generate points expressible 

with (+,−,×,÷, 𝑧̅, √𝑧) operating on the original points. 

The general cubic solution needs the operator 𝑧1 3⁄   

which is not constructible from operators in the list. 

cos(𝛼 3⁄ ), 21/3 and √𝜋  are not constructible. 

     ⇓  

Trisecting an angle, doubling a cube 

or squaring a circle is impossible. 

The ancient Greeks tried but failed. 

 

Example of constructible number: 

16 cos (
2𝜋

17
) = −1 + √17 + √34 − 2√17 + 2√17 + 3√17 − √34 − 2√17 − 2√34 + 2√17 

⟹ Regular heptadecagon (17-gon) is constructible with ruler and compass. 

(Proved by Carl Friedrich Gauss in 1796 at age 17)  

 

 

x 

y r 

𝜃 

cos 3𝜃 = Re(𝑒3𝜃𝑖) = Re(cos 𝜃 + 𝑖 sin𝜃)3 = 4cos3𝜃 − 3cos𝜃   ⟹ cos3𝜃 = (cos3𝜃 + 3cos𝜃) 4⁄  

4𝜋𝑟3

3
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2.15 Show that the area of a parabolic segment can be seen as 

 a sum of areas of inscribed triangles that form 

 a geometric series. 

 

 

A general parabola can be described as 𝑦 = 𝑘(𝑥 − 𝛼)2 + 𝛽 in a coordinate system (with z-axis). 

Translation and reflection (in x-axis) will not change areas. We can assume 𝛼, 𝛽 = 0 , 𝑘 > 0. 

We will consider ratios of areas of inscribed triangles. 

A ratio of areas is unaffected by a stretch in the y-direction, assume 𝑘 = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area of a parabolic segment with 𝐴1 = area of inscribed triangle with chord and apex at horizontal mean: 

𝐴 = 𝐴1 + (𝐵1 + 𝐵2) + (𝐶1 + 𝐶2 + 𝐶3 + 𝐶4) + ⋯ = 𝐴1 ⋅∑
1

4𝑖

∞

𝑖=1

=
4

3
𝐴1 

𝐴 = 𝐴1 ⋅∑
2𝑖

8𝑖

∞

𝑖=1

=
4

3
𝐴1 

 

Each new inscribed triangle is formed with its base on an existing one. 

Let the x-coordinate of the new point be the mean of the x-coordinates of the base points. 

The y-coordinate will lie on the parabola 𝑦 = 𝑥2. 

 

𝑐 =
𝑎 + 𝑑

2
 and 𝑏 =

𝑎 + 𝑐

2
 

 

𝑟𝑥⃗⃗⃗  = (𝑥, 𝑥
2, 0) 

 

2𝐴1 = |(𝑟𝑐⃗⃗ − 𝑟𝑎⃗⃗  ⃗) × (𝑟𝑑⃗⃗  ⃗ − 𝑟𝑎⃗⃗  ⃗)| 

2𝐵1 = |(𝑟𝑏⃗⃗  ⃗ − 𝑟𝑎⃗⃗  ⃗) × (𝑟𝑐⃗⃗ − 𝑟𝑎⃗⃗  ⃗)| 

 

𝐴1
𝐵1
=
(𝑐 − 𝑎)(𝑑2 − 𝑎2) − (𝑐2 − 𝑎2)(𝑑 − 𝑎)

(𝑏 − 𝑎)(𝑐2 − 𝑎2) − (𝑏2 − 𝑎2)(𝑐 − 𝑎)
 

      =
(𝑐 − 𝑎)(𝑑 − 𝑎)(𝑑 − 𝑐)

(𝑏 − 𝑎)(𝑐 − 𝑎)(𝑐 − 𝑏)
= 8 

 

Similarly 𝐴1/𝐵1 = 8  , 𝐴1/𝐶1 = 8
2 etc. 

 𝑠𝑜 𝐵1 + 𝐵2 =
1

4
𝐴1 and 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 =

1

42
𝐴1  etc. 
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𝑛 ∈ ℤ+ 

2.16 Solve the cattle problem of Archimedes: 

  

 “ Compute, O friend the number of cattle of the sun which once grazed 

 upon the plains of Sicily, divided according to color into four herds, …” 

 They were white, yellow, black and dappled, bulls (𝑊, 𝑌, 𝐵, 𝐷), cows (𝑤, 𝑦, 𝑏, 𝑑). 

 There were more bulls than cows and their numbers were as:  

 

 

 

 

 

 

   𝑊 +𝐵 is a square number 

   𝐷 + 𝑌 a triangular number  

 

 Find the number of cattle which once grazed upon the plains of Sicily. 

 

The first part is a linear problem to find 𝐯 = (𝑊,𝐵, 𝐷, 𝑌, 𝑤, 𝑏, 𝑑, 𝑦)𝑇 ∈ ℤ𝟖 with 𝐦 ⋅ 𝐯 = 𝟎. 

𝐦 =

(

 
 
 
 
 
 

−1 5

6
0 1 0 0 0 0

0 −1 9

20
1 0 0 0 0

13

42
0 −1 1 0 0 0 0

0 7

12
0 0 −1 7

12
0 0

0 0 9

20
0 0 −1 9

20
0

0 0 0 11

30
0 0 −1 11

30
13

42
0 0 0 13

42
0 0 −1)

 
 
 
 
 
 

   

Using Mathematica and NullSpace[𝐦] gives the vectors spanning the solution space. 

𝐯 = 𝛼 (
3455494

1813071
,
828946

604357
,
7358060

5439213
,
461043

604357
,
2402120

1813071
,
543694

604357
,
1171940

1813071
, 1)

T

   𝛼 ∈ ℝ  

Bulls

Cows
=
𝑊+𝐵+𝐷+𝑌

𝑤+𝑏+𝑑+𝑦
≈ 1.39 in the spanning vector, more bulls than cows is satisfied. 

Multiplying with the least common multiple (LCM) of the denominators, (LCM = 32 ⋅ 13 ⋅ 46489). 

𝑊 = 10 366 482 ⋅ 𝑛 𝑤 = 7 206 360 ⋅ 𝑛
𝐵 =     7 460 514 ⋅ 𝑛 𝑏 = 4 893 246 ⋅ 𝑛
𝐷 =     7 358 060 ⋅ 𝑛 𝑑 = 3 515 820 ⋅ 𝑛
𝑌 =     4 149 387 ⋅ 𝑛 𝑦 = 5 439 213 ⋅ 𝑛

 

 

𝑊 +𝐵 square number, all primefactors have even exponents: 

𝑊 +𝐵 = 22 ⋅ 3 ⋅ 11 ⋅ 29 ⋅ 4657 ⋅ 𝑛 ⟹ 𝑛 = 3 ⋅ 11 ⋅ 29 ⋅ 4657 ⋅ 𝑞2 ,   𝑞 ∈ ℤ  

𝑊 = (
1

2
+
1

3
)𝐵 + 𝑌

𝐵 = (
1

4
+
1

5
)𝐷 + 𝑌

𝐷 = (
1

6
+
1

7
)𝑊 + 𝑌

 

𝑤 = (
1

3
+
1

4
) (𝐵 + 𝑏)

𝑏 = (
1

4
+
1

5
) (𝐷 + 𝑑)

𝑑 = (
1

5
+
1

6
) (𝑌 + 𝑦)

𝑦 = (
1

6
+
1

7
) (𝑊 + 𝑤)
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𝐷 + 𝑌 triangle number of form 𝑁(𝑁 + 1)/2 

𝐷 + 𝑌 = 𝑘𝑞2 

𝑘 = (7358060 + 4149387) ⋅ 3 ⋅ 11 ⋅ 29 ⋅ 4657 

𝑘𝑞2 =
𝑁(𝑁 + 1)

2
  𝑞, 𝑁 ∈ ℤ+ 

𝑁 =
√8𝑘𝑞2 + 1 − 1

2
 ⟹ 

8𝑘𝑞2 + 1 = 𝑝2   𝑞 ∈ ℤ+ , 𝑝 ∈ 2ℤ+ + 1 

𝑝2 − 𝐾𝑞2 = 1    𝐾 =410 286 423 278 424 

𝑝 ∈ 2ℤ ⇒ 𝑝2 − 𝐾𝑞2 ∈ 2ℤ ∋ 1 

⇓ 

Problem reduced to finding (𝑝, 𝑞) ∈ (ℤ+, ℤ+) 

on a hyperbola 𝑝2 − 𝐾𝑞2 = 1  (Pell’s equation) 

𝑝2 − 2𝑞2 = 1 

Mathematica code to find solution to cattle problem: 

 

W=10366482;B=7460514;D=7358060;Y=4149387; 

w=7206360;b=4893246;d=3515820;y=5439213; 

Total1=W+B+D+Y+w+b+d+y; 

FactorInteger[W+B] 

   {{2,2},{3,1},{11,1},{29,1},{4657,1}} 

m=3·11·29·4657; 

k=(D+Y) ·m; 

K=8k; 

pqRule=FindInstance[p2-K·q2,{p,q},Integers]; 

Total2=Total1·m·q2 /. pqRule[[1]]; 

N[Total2,10] 

    7.760271406 ⋅ 10206544 

 

 The total number of cattle is: 

7760271406…455081800⏟                  
206545 digits

⋅ 𝑛 

 

The problem was discovered in 1769 

and solved by A. Amthor in 1880. 

All digits were first printed in 1965. 

To find solutions (𝑝, 𝑞) ∈ (ℤ. , ℤ) to Pell’s equation, start from 𝑝2 − 𝐾𝑞2 = 1 ⇒ 𝑝 𝑞⁄ = √𝐾 + 1/𝑞2. 

The theory was developed by Lagrange in 1766–1769. 

If 𝐾 is a square natural number the problem will be trivial since 

𝑝2 − 𝐾𝑞2 = (𝑝 + 𝑘𝑞)(𝑝 − 𝑘𝑞) with 𝑘 = √𝐾 ∈ ℤ+. 

 

A non-square 𝐾 has a palindromic periodic continued fraction expansion 

 √𝐾 = [⌊√𝐾⌋; 𝑎1, 𝑎2, … , 𝑎2, 𝑎1, 2⌊√𝐾⌋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] with a repeating period of length 𝑟. 

Pell’s equation has a non-trivial solution (𝑝, 𝑞), the positive one with minimal 𝑝 is called the 

minimal solution (𝑝1, 𝑞1). It is found among the convergents ℎ𝑛 𝑘𝑛 ≡ [𝑥0; 𝑥1, … , 𝑥𝑛] ⁄ of √𝐾. 

(𝑝1, 𝑞1) = {
(ℎ𝑟−1, 𝑘𝑟−1) if 𝑟 is even
(ℎ2𝑟−1, 𝑘2𝑟−1) if 𝑟 is odd

 

All solutions can be derived from symmetry (reflection in x/y-axis) and 

from powers of the minimal solution: 𝑝 + 𝑞√𝐾 = ±(𝑝1 + 𝑞1√𝐾)
±𝑛  , 𝑛 ∈ {0,1,2, … } 

An effort was made in 1867 to solve the Cattle problem but √410 286 423 278 424 has 𝑟 = 203254 

Amthor solved it by removing a square factor 22 ⋅ 46572 to get a square-free root with 𝑟 = 92. 

 

 If Archimedes’ cattle problem was really formulated by Archimedes is uncertain. It was discovered in 

an old Greek manuscript in a German library and published in 1773. There was plenty of time from 

Archimedes death in 212 BC for somebody with an interesting math problem and some knowledge 

of antiquity and Greek to attribute it to Archimedes in a nicely formulated letter to Eratosthenes, the 

librarian at Alexandria. The problem is not mentioned in any known sources of ancient Greek origin. 
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2.17 Show that the ratio of the diagonal to the side in a regular pentagon equals 

 the golden ratio, 
𝑏

𝑎
= 𝜑 ≡

1+√5

2
. 

Ptolemy’s theorem on the circular 

quadrilateral gives: 

𝑏2 = 𝑏𝑎 + 𝑎2 

(
𝑏

𝑎
)
2

=
𝑏

𝑎
+ 1 

𝑏

𝑎
=
1 + √5

2
 

Ptolemy’s theorem: 

In a circular quadrilateral ABCD:  ACBD=ABCD+ADBC 

 

Put a point P on line BD such that ∠𝐵𝐶𝐴 = ∠𝑃𝐶𝐷 

Δ𝐴𝐵𝐶~Δ𝐷𝑃𝐶 ⇒  
𝐴𝐶

𝐴𝐵
=
𝐷𝐶

𝐷𝑃
 ⇒ 𝐴𝐶 ⋅ 𝐷𝑃 = 𝐴𝐵 ⋅ 𝐷𝐶 

 

Δ𝐴𝐶𝐷~Δ𝐵𝐶𝑃 ⇒  
𝐴𝐶

𝐴𝐷
=
𝐵𝐶

𝐵𝑃
 ⇒ 𝐴𝐶 ⋅ 𝐵𝑃 = 𝐴𝐷 ⋅ 𝐵𝐶 

 

𝐴𝐶 ⋅ (𝐷𝑃 + 𝐵𝑃) =  𝐴𝐵 ⋅ 𝐷𝐶 +  𝐴𝐷 ⋅ 𝐵𝐶 

 

𝐴𝐶 ⋅ 𝐵𝐷 = 𝐴𝐵 ⋅ 𝐶𝐷 + 𝐴𝐷 ⋅ 𝐵𝐶 
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Table of 1s and 0s 

below row of Ps 

𝑇𝑖𝑗 

1 ≤ 𝑖 ≤ 2𝑛 

1 ≤ 𝑗 ≤ 𝑛 

𝑄 = (𝑃1 ∧ 𝑃2) ∨ (¬𝑃1 ∧ 𝑃2) ∨ (¬𝑃1 ∧ ¬𝑃2) 

Boolean algebra: 

Use distributive law to get combination of 𝑃𝑖with itself. 

= (𝑃1 ∨ ¬𝑃1 ∨ ¬𝑃1)⏟          
1

∧ (𝑃1 ∨ ¬𝑃1 ∨ ¬𝑃2)⏟          
1

 

∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃1)⏟          
1

∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃2)⏟          
1

 

∧ (𝑃2 ∨ ¬𝑃1 ∨ ¬𝑃1)⏟          
𝑃2∨¬𝑃1

∧ (𝑃2 ∨ ¬𝑃1 ∨ ¬𝑃2)⏟          
1

 

∧ (𝑃2 ∨ 𝑃2 ∨ ¬𝑃1)⏟          
𝑃2∨¬𝑃1

∧ (𝑃2 ∨ 𝑃2 ∨ ¬𝑃2)⏟          
1

 

= 𝑃2 ∨ ¬𝑃1 = ¬(𝑃1 ∧ ¬𝑃2)   (Obviously true from truth table) Rules of Boolean algebra: 

 

𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧 Associativity of ∨ 

𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 Associativity of ∧
𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 Commutativity of ∨
𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 Commutativity of ∧

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) Distributivity of ∧ over ∨

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) Distributivity of ∨ over ∧
𝑥 ∨ 0 = 𝑥 Identity for ∨
𝑥 ∧ 1 = 𝑥 Identity for ∧
𝑥 ∨ 1 = 1 Annihilator for ∨
𝑥 ∧ 0 = 0 Annihilator for ∧
𝑥 ∨ 𝑥 = 𝑥 Idempotence for ∨
𝑥 ∧ 𝑥 = 𝑥 Idempotence for ∧
𝑥 ∨ ¬𝑥 = 1 Complementation for ∨
𝑥 ∧ ¬𝑥 = 0 Complementation for ∧

¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦 De Morgan′s law I

¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦 De Morgan′slaw II
¬¬𝑥 = 𝑥 Double negation

 

3.1 Show that a logical 𝑛-ary operator 𝑄(𝑃1, … , 𝑃𝑛) with a specified truth table 

 can be given by a formula based on 𝑃𝑖  , ¬ and ∧. 

 𝑃1 𝑃2 ⋯ 𝑃𝑛−1 𝑃𝑛 𝑄 
(2𝑛 − 1)2 1 1 ⋯ 1 1 𝑇1 
(2𝑛 − 2)2 1 1 ⋯ 1 0 𝑇2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 
(1)2 0 0 ⋯ 0 1 𝑇2𝑛−1 
(0)2 0 0 ⋯ 0 0 𝑇2𝑛 

 

 

To make a row with 𝑇𝑖 = 1 true we use AND on every column with {
𝑃𝑗  if 1 in column

¬𝑃𝑗  if 0 in column
 . 

Combine these formulas with OR and every row with 𝑇𝑖 = 1 will be correct once and therefore true. 

No row with 𝑇𝑖 = 0 will be included and therefore false for each argument of OR and so false. 

𝑄 = ⋁ ( ⋀  {
𝑃𝑗  if Tij = 1

¬𝑃𝑗  if Tij = 0

𝑛

𝑗 = 1

)

{𝑖: 𝑇𝑖 = 1}

 

Since A ∨ B can be replaced with ¬(¬A ∧ ¬𝐵) there is no need for ∨, only 𝑃𝑖  , ¬ and ∧. 

Example: 

 

 

 

𝑃1 𝑃2 𝑄 = 𝑃1 → 𝑃2 

1 1 1 

1 0 0 

0 1 1 

0 0 1 

𝑇𝑖 ∈ {0,1} 
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3.2 Conway’s arrow notation 𝑐1 → 𝑐2 → ⋯ → 𝑐𝑛 is defined recursively: 

 1. 𝑝 → 𝑞 ≡ 𝑝𝑞   (𝑝, 𝑞 ∈ ℤ+) 

 2. 𝑋 → 1 ≡ 𝑋     (𝑋 is any chained expression) 

 3. 𝑋 → 𝑝 → (𝑞 + 1) ≡ 𝑋 → (𝑋 → (⋯(𝑋 → (𝑋) → 𝑞)⋯ ) → 𝑞) → 𝑞⏟                            
𝑝 repetitions of 𝑋

 

 Knuth’s up-arrow notation 𝑎 ↑𝑛 𝑏 (𝑎, 𝑏, 𝑛 ∈ ℤ+) is defined recursively as: 

 𝑎 ↑ 𝑏 = 𝑎𝑏 

 𝑎 ↑𝑛+1 𝑏 ≡ 𝑎 ↑𝑛 (𝑎 ↑𝑛 (… ↑𝑛 𝑎))⏟              
𝑏 repetitions of 𝑎

 

 Show that: 

 • Conway chained arrow notation is not an iterated binary operator and 

 • 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞 

 • Express 3 → 3 → 3 → 2 in Knuth’s up-arrow notation. 

 

To show that chained arrow notation is not an iterated binary operator it will be enough to find a 

counterexample that shows 𝑎 → 𝑏 → 𝑐 ≠ (𝑎 → 𝑏) → 𝑐 and → 𝑏 → 𝑐 ≠ 𝑎 → (𝑏 → 𝑐) . 

 

(4 → 2) → 3 = (42)3 = 46 = 4 ↑ 6 

4 → (2 → 3) = 42
3
= 48 = 4 ↑ 8 

4 → 2 → 3 = 4 → (4) → 2 = 4 → (4 → (4 → (4) → 1) → 1) → 1 = 44
44

= 4 ↑↑ 4 = 4 ↑3 2 

 

r = 1: 𝑝 → 𝑞 → 1 = 𝑝𝑞 = 𝑝 ↑1 𝑞 

Assume 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞 true for 𝑟 ≤ 𝑛. 

𝑝 → 𝑞 → (𝑛 + 1) = 𝑝 → (𝑝 → (⋯(𝑝 → (𝑝 → (𝑝) → 𝑛) → 𝑛)⋯ ) → 𝑛 → 𝑛   (q repetitions) 

                                 = 𝑝 → (𝑝 → (⋯(𝑝 →        (𝑝 ↑𝑛 𝑝)      → 𝑛)⋯ ) → 𝑛 → 𝑛 

                                 = 𝑝 → (𝑝 → (⋯(      𝑝 ↑𝑛 (𝑝 ↑𝑛 𝑝)              )⋯ ) → 𝑛 → 𝑛 

                                 = 𝑝 ↑𝑛 (𝑝 ↑𝑛 (⋯     (𝑝 ↑𝑛  (𝑝 ↑𝑛 𝑝))⋯ ))   (q repetitions) 

                                 = 𝑝 ↑𝑛+1 𝑞 

By induction 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞   for every 𝑝, 𝑞, 𝑟 in ℤ+. 

 

3 → 3⏟  
𝑋

→ 3⏟
𝑝

→ 2⏟
𝑞+1

= 3 → 3 → (3 → 3 → (3 → 3) → 1) → 1

= 3 → 3 →    (3 → 3 →  (3 ↑ 3))      → 1

= 3 → 3 →            (3 ↑(3↑3) 3)

= 3 ↑ (3↑
(3↑3)3) 3

 

3 → 3 → 3 → 2 = 3 ↑ (3↑
(3↑3)3) 3 

3 → 3 → 𝑛 → 2 will be stacked n levels 

 

Introducing 𝑓(𝑛) = 3 ↑𝑛 3 = 3 → 3 → 𝑛 from Big numbers part 2 in the book. 

𝑓(1) = 27     𝑓2(1) = 𝑓(𝑓(1)) = 3 → 3 → (3 → 3 → 1) 

𝑓𝑛(1) = 3 → 3 → (3 → 3 → (… (3 → 3 → 1)… ) n rep. = 3 → 3 → 𝑛 → 2 

3 → 3 → 3 → 3 = 3 → 3 → (3 → 3 → 27 → 2) → 2 = 𝑓3→3→27→2(1) = 𝑓3→3→27→2−1(27) 

This number is quite a bit larger than Grahams number 𝐺 = 𝑓64(4) from Big numbers part 2.
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3.3 Show that a sum of powers of degree 𝑝 is a polynomial of degree 𝑝 + 1 and derive the 

 polynomial 𝑆𝑝(𝑛). Do this for 𝑝 = 3 , 𝑝 = 4 and possibly beyond. 

                                                                     𝑆𝑝(𝑛) = ∑ 𝑘𝑝𝑛
𝑘=1  

𝑝 = 3:  𝑆3(𝑛) = 1
3 + 23 +⋯+ 𝑛3 = 𝑎0𝑛

0 + 𝑎1𝑛
1 + 𝑎2𝑛

2 + 𝑎3𝑛
3 + 𝑎4𝑛

4⏟                      
𝑃(𝑛)

 

𝑆3(0) = 0 → 𝑎0 = 0   (∫ 𝑥3𝑑𝑥 < ∑ 𝑘3𝑛
𝑘=0 < ∫ 𝑥3𝑑𝑥

𝑛+1

1

𝑛

0
→ we could assume 𝑎4 =

1

4
, but will not)      

n (13 +⋯+ 𝑛3) 𝑃(𝑛) 

1 13  𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 

2 13  + 23 2𝑎1 + 2
2𝑎2 + 2

3𝑎3 + 2
4𝑎4 

3 1 + 23 + 33 3𝑎1 + 3
2𝑎2 + 3

3𝑎3 + 3
4𝑎4 

4 1 + 23 + 33 + 43 4𝑎1 + 4
2𝑎2 + 4

3𝑎3 + 4
4𝑎4 

 

 

 

 

 

 

𝑆3(𝑛) = 𝑆3̿(𝑛) is true for 𝑛 = 1,2,3,4. Assume it is true for 𝑛 and show 4𝑆3(𝑛 + 1) = 4𝑆3̿(𝑛 + 1): 

4𝑆3(𝑛 + 1) 4𝑆3̿(𝑛 + 1) 

4(𝑆3(𝑛) + (𝑛 + 1)
3)  (𝑛 + 1)2 + 2(𝑛 + 1)3 + (𝑛 + 1)4 

4𝑆3̿(𝑛) + 4(1 + 3𝑛 + 3𝑛
2 + 𝑛3) 4 + 12𝑛 + 13𝑛2 + 6𝑛3 + 𝑛4 

4 + 12𝑛 + 13𝑛2 + 6𝑛3 + 𝑛4  

 

In the same way we find: 

𝑆0(𝑛) = 𝑛 

𝑆1(𝑛) =
1

2
𝑛2 +

1

2
𝑛 

𝑆2(𝑛) =
1

3
𝑛3 +

1

2
𝑛2 +

1

6
𝑛 

𝑆3(𝑛) =
1

4
𝑛4 +

1

2
𝑛3 +

1

4
𝑛2 

𝑆4(𝑛) =
1

5
𝑛5 +

1

2
𝑛4 +

1

3
𝑛3 −

1

30
𝑛 

𝑆5(𝑛) =
1

6
𝑛6 +

1

2
𝑛5 +

5

12
𝑛4 −

1

12
𝑛2 

𝑆6(𝑛) =
1

7
𝑛7 +

1

2
𝑛6 +

1

2
𝑛5 −

1

6
𝑛3 +

1

42
𝑛 

𝑆7(𝑛) =
1

8
𝑛8 +

1

2
𝑛7 +

7

12
𝑛6 −

7

24
𝑛4 +

1

12
𝑛 

 

𝐶(𝑝, 𝑗) seem to be easiest to guess column-wise, with 𝐶(𝑝, 0) = 1 and 𝐶(𝑝, 1) = (𝑝 + 1) ⋅ 1 2⁄ . 

Turning to denominator 12 in column three reveals  𝐶(𝑝, 2) = (𝑝 + 1) ⋅ 𝑝 ⋅ 1 12⁄ . No 𝑛𝑝−3 terms 

means  𝐶(𝑝, 3) = 0. The next column starting with −1/30 seems harder to figure out, one guess 

is to continue the trend of a factor of falling factorials 𝐶(𝑝, 4) = (𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2) ⋅ 𝐶.

(

1 1 1 1
2 22 23 24

3 32 33 34

4 42 43 44

)

⏟            
𝑀

(

𝑎1
𝑎2
𝑎3
𝑎4

)

⏟  
𝐴

= (

1
1 + 23

1 + 23 + 33

1 + 23 + 33 + 43

)

⏟            
𝑋

 

  

Mathematica code: 

M = Table[ i^j , {i,4} , {j,4} ] 

X = Table [Sum[ i^3 , {i,1,j} ], {j,4}] 

A = Inverse[m].x 

Results: 

𝐴[𝑖] = (0,
1

4
,
1

2
,
1

4
) → 𝑆3̿(𝑛) =

1

4
𝑛2 +

1

2
𝑛3 +

1

4
𝑛4 

𝑆3(𝑛) = (1
3 +⋯+ 𝑛3) → 𝑆3(𝑛) = (1,9,36,100,225,441, … ) 

𝑆3̿(𝑛) = (1,9,36,100,225,441,… ) 

Sums of powers have interested mathematicians since 500 BC. 

Pythagoras derived 𝑆1(𝑛) and Archimedes derived 𝑆2(𝑛). 

Aryabhata in India discovered the formula for 𝑆3(𝑛) c. 500 AD. 

Abu Bakr al-Karaji, Bagdad gave a proof of 𝑆3(𝑛) in c. 1000 AD 

and Abu ibn al-Haytham derived 𝑆4(𝑛) in the same period. 

Johann Faulhaber, Germany calculated 𝑆𝑝(𝑛) for 𝑝 = 1,… ,17 

in c. 1600. Secret messages in exercises reveal that he reached 

𝑝 = 25 without publishing it. The general formula for 𝑆𝑝(𝑛) is 

named after him but he never proved it. The first proof was 

given by Carl Jacobi in 1834. To find the true formula we will  

index powers downwards and extract a factor of 1/(𝑝 + 1). 

𝑆𝑝(𝑛) =
1

𝑝 + 1
∑𝐶(𝑝, 𝑗)𝑛𝑝+1−𝑗
𝑝

𝑗=0
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By making a list of M, Table[ Table[ i^j , {i,m+1} , {j,m+1} ], {m,17} ] and similarly for X, calculating 𝑆𝑝(𝑛) 

and extracting 𝐶(𝑝, 𝑗) it seems reasonable to assume that 𝐶(𝑝, 𝑗) = (𝑝 + 1)𝑝(𝑝 − 1)… (𝑝 + 2 − 𝑗)𝐴𝑗 

The general formula for sums of powers 𝑆𝑝(𝑛) is named in honor of Faulhaber. It is written: 

𝑆𝑝(𝑛) =
1

𝑝 + 1
∑(−1)𝑗 (

𝑝 + 1
𝑗
)𝐵𝑗𝑛

𝑝+1−𝑗

𝑝

𝑗=0

     (𝐵𝑗)0
∞
= (1,−

1

2
,
1

6
, 0, −

1

30
, 0,

1

42
,… ) 

The factor (−1)𝑗 can seem a bit confusing. It only matters for 𝑗 = 1 since 𝐵𝑗 is zero for every odd 𝑗 > 1. 

The constants 𝐵𝑗 are called Bernoulli numbers, they come in two versions that only differ for 𝐵1.The first 

version has 𝐵1 = −½  and the second version has 𝐵1 = +½. This difference corresponds to +𝑛2/2 and 

−𝑛2/2 in 𝑆𝑝(𝑛), the same difference occurs for a slightly different convention for 𝑆𝑝(𝑛) that start with 

0𝑝 and ends with (𝑛 − 1)𝑝. The Bernoulli numbers have deep connections to number theory. They are 

named after Jakob Bernoulli (1655—1705) who discovered that the coefficient of 𝑛𝑚−𝑗 is always a 

constant times 𝑚!/(𝑚 − 𝑗)!. The following proof of the general formula is inspired by “Concrete 

Mathematics” written by Graham, Knuth and Patashnik. It is a proof by induction and the goal will be to 

find the values of 𝐵𝑗 that will make the proof work. 

𝑆𝑝(𝑛) = ∑𝑘𝑝
𝑛−1

𝑘=0

𝑆�̿�(𝑛) =
1

𝑝 + 1
∑(

𝑝 + 1
𝑗
)𝐵𝑗𝑛

𝑝+1−𝑗

𝑝

𝑗=0

Show  𝑆𝑝(𝑛) = 𝑆�̿�(𝑛)  

𝑝 = 0:  𝑆0(𝑛) = ∑ 𝑘0
𝑛−1

𝑘 = 0

= 𝑛   (00 = 1 has been assumed. It is the most natural convention) 

 𝑆0̿(𝑛) = 𝐵0𝑛       → 𝑆0(𝑛) = 𝑆0̿(𝑛)  if 𝐵0 = 1 

Assume 𝑆𝑖(𝑛) = 𝑆�̿�(𝑛) for 0 ≤ 𝑖 < 𝑝. 

𝑆𝑝+1(𝑛) + 𝑛
𝑝+1 =∑(𝑘 + 1)𝑝+1 =∑∑(

𝑝 + 1
𝑗
) 𝑘𝑗 =∑(

𝑝 + 1
𝑗
)

𝑝+1

𝑗=0

𝑆𝑗

𝑝+1

𝑗=0

𝑛−1

𝑘=0

𝑛−1

𝑘=0

→ 

𝑛𝑝+1 = ∑ (
𝑝 + 1
𝑗
) 𝑆𝑗(𝑛)

𝑝

𝑗 = 0

= ∑ (
𝑝 + 1
𝑗
) 𝑆�̿�(𝑛) + (

𝑝 + 1
𝑝
) 𝑆𝑝(𝑛) − (

𝑝 + 1
𝑝
) 𝑆�̿�(𝑛)

𝑝

𝑗 = 0

     By assumption of induction

= ∑ (
𝑝 + 1
𝑗
) 𝑆�̿�(𝑛) + (𝑝 + 1)

𝑝

𝑗 = 0

(𝑆𝑝(𝑛) − 𝑆�̿�(𝑛)⏟        
Δ

)

= ∑ (
𝑝 + 1
𝑗
)
1

𝑗 + 1
∑ (

𝑗 + 1
𝑘
)𝐵𝑘𝑛

𝑗+1−𝑘

𝑗

𝑘 = 0

𝑝

𝑗 = 0

+ (𝑝 + 1)Δ     By definition of 𝑆�̿�(𝑛)

 

Our aim will be to show Δ = 0 for a suitable choice of 𝐵𝑗. 
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𝑛𝑝+1 = ∑ (
𝑝 + 1
𝑗
) (
𝑗 + 1
𝑘
)
𝐵𝑘
𝑗 + 1

𝑛𝑗+1−𝑘

0 ≤ 𝑘 ≤ 𝑗 ≤ 𝑝

+ (𝑝 + 1)Δ

= ∑ (
𝑝 + 1
𝑗
) (
𝑗 + 1
𝑗 − 𝑘

)
𝐵𝑗−𝑘

𝑗 + 1
𝑛𝑘+1

0 ≤ 𝑘 ≤ 𝑗 ≤ 𝑝

+ (𝑝 + 1)∆            k → j − k, terms permuted

= ∑ (
𝑝 + 1
𝑗
) (
𝑗 + 1
𝑘 + 1

)
𝐵𝑗−𝑘

𝑗 + 1
𝑛𝑘+1

0 ≤ 𝑘 ≤ 𝑗 ≤ 𝑝

+ (𝑝 + 1)∆           (
𝑎
𝑏
) = (

𝑎
𝑎 − 𝑏

)

= ∑
𝑛𝑘+1

𝑘 + 1
∑ (

𝑝 + 1
𝑗
) (
𝑗
𝑘
)𝐵𝑗−𝑘

𝑘 ≤ 𝑗 ≤ 𝑝0 ≤ 𝑘 ≤ 𝑝

+ (𝑝 + 1)∆       

= ∑
𝑛𝑘+1

𝑘 + 1
(
𝑝 + 1
𝑘
) ∑ (

𝑝 + 1 − 𝑘
𝑗 − 𝑘

)𝐵𝑗−𝑘
𝑘 ≤ 𝑗 ≤ 𝑝0 ≤ 𝑘 ≤ 𝑝

+ (𝑝 + 1)∆     (
𝑎
𝑏
) (
𝑏
𝑐
) = (

𝑎
𝑐
) (
𝑎 − 𝑐
𝑏 − 𝑐

)    

= ∑
𝑛𝑘+1

𝑘 + 1
(
𝑝 + 1
𝑘
) ∑ (

𝑝 + 1 − 𝑘
𝑗

)𝐵𝑗
0 ≤ 𝑗 ≤ 𝑝 − 𝑘0 ≤ 𝑘 ≤ 𝑝

+ (𝑝 + 1)∆    changed index 𝑗 − 𝑘 → 𝑗

= ∑
𝑛𝑘+1

𝑘 + 1
(
𝑝 + 1
𝑘
)𝛿𝑝𝑘

0 ≤ 𝑘 ≤ 𝑝

+ (𝑝 + 1)∆                         If ∑ (
𝑝 + 1 − 𝑘

𝑗
)𝐵𝑗 =

0 ≤ 𝑗 ≤ 𝑝 − 𝑘

𝛿𝑝𝑘

=
𝑛𝑝+1

𝑝 + 1
(
𝑝 + 1
𝑝
) + (𝑝 + 1)∆

= 𝑛𝑝+1 + (𝑝 + 1)∆                   ⟹          ∆= 0     ⟹           𝑆𝑝(𝑛) = 𝑆�̿�(𝑛)

 

If 𝐵𝑗 can be chosen s. t. ∑ (
𝑁 + 1
𝑗
)𝐵𝑗 = 𝛿𝑁,0

0 ≤ 𝑗 ≤ 𝑁

 for every 𝑁 ∈ ℕ0 then 𝑆𝑝(𝑛) = 𝑆�̿�(𝑛) for 𝑛 ∈ ℕ0 

𝑁 = 0 (
1
0
)𝐵0 = 1 → 𝐵0 = 1

𝑁 = 1 (
2
0
)𝐵0 + (

2
1
)𝐵1 = 0 → 𝐵1 = −

1

2

𝑁 = 2 (
3
0
)𝐵0 + (

3
1
)𝐵1 + (

3
2
)𝐵2 = 0 → 𝐵2 =

1

6
    etc.

 

These numbers called Bernoulli numbers were discovered independently by Jakob Bernoulli from Switzer-

land and Seki Kowa from Japan. Both their works on these numbers were published posthumously, Seki’s in 

1712 and Bernoulli’s in 1713. 

(𝐵𝑗)0
∞
= (1,−

1

2
,
1

6
, 0,−

1

30
, 0,

1

42
, 0, −

1

30
, 0,

5

66
, 0, −

691

2730
, 0,

7

6
, −

3617

510
, 0,

43867

798
, 0,

174611

330
, … ) 

 

 

0𝑝 + 1𝑝 + 2𝑝 +⋯+ (𝑛 − 1)𝑝 =
1

𝑝 + 1
∑(

𝑝 + 1
𝑗
)𝐵𝑗𝑛

𝑝+1−𝑗

𝑝

𝑗=0
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3.4 Prove that if two sets are countable, totally ordered, dense and 

 without upper and lower bounds then they are order-isomorphic.  

 

Let (𝐴,≤𝐴) and (𝐵,≤𝐵) be two such ordered sets, 𝐴 = {𝑎1, 𝑎2, … } and 𝐵 = {𝑏1, 𝑏2, … }. 

The conditions make them countably infinite. 

Define a bijective function 𝑓: 𝐴 → 𝐵: 𝑎𝑖 ↦ 𝑓(𝑎𝑖) = 𝑏𝑔(𝑖) by repeatedly following rule 1 and 2 : 

1. Let 𝑖 be the smallest index 𝑖 s.t. 𝑎𝑖 is not yet paired with a member of 𝐵. 

 If 𝑎𝑖 is strictly smaller than any of the previously paired elements of 𝐴, 

  pair it with an element of 𝐵 strictly smaller than any previously paired element of 𝐵. 

 Elseif 𝑎𝑖 is strictly larger than any of the previously paired elements of 𝐴, 

  pair it with an element of 𝐵 strictly larger than any previously paired element of 𝐵. 

 Else 𝑎𝑥 < 𝑎𝑖 < 𝑎𝑦 where 𝑎𝑥 is the largest of paired elements of 𝐴 smaller than 𝑎𝑖 

  and vice versa for 𝑎𝑦. Pair 𝑎𝑖 with an element 𝑏𝑗 s.t. 𝑓(𝑎𝑥) < 𝑏𝑗 < 𝑓(𝑎𝑦). 

2. Let 𝑗 be the smallest index 𝑗 s.t. 𝑏𝑗 is not yet paired with a member of 𝐴. 

 Repeat the conditions under rule 1 word for word with 𝐴 ⟷ 𝐵, 𝑎 ⟷ 𝑏 and 𝑖 ⟷ 𝑗. 

 

 

 

 

 

 

Total order guarantees that all elements in each set 𝐴 and 𝐵 are comparable with each other. 

Denseness and lack of upper and lower bounds guarantee that mates to 𝑎𝑖 and 𝑏𝑗 can be found. 

Countability guarantees that every element in 𝐴 and 𝐵 is in a list and will eventually be paired of. 

𝑓 is a bijection and the construction of 𝑓 guarantees that 𝑎𝑚 ≤𝐴 𝑎𝑛 ⟹ 𝑓(𝑎𝑚) ≤𝐵 𝑓(𝑎𝑛) so 

 (𝐴,≤𝐴) and (𝐵, ≤𝐵) are order-isomorphic. 

The statement was first proved by Georg Cantor in 1895 by other methods. The method presented 

above is called the back-and-forth method. In all its simplicity it is of a surprisingly late date. 

It was introduced by Huntington and Hausdorff in the beginning of the 20th century.

𝐴 

𝐵 
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3.5 Exercises on cardinality of sets: 

  a) Show that |ℝ| = |(0,1)|. 

  b) Show that |𝒫(𝐴)| > |𝐴| for any set 𝐴. 

  c) Show |𝐴| ≤ |𝐵| and |𝐵| ≤ |𝐴| ⇒ |𝐴| = |𝐵|.   ( The Schröder-Bernstein theorem ) 

  d) Find a bijective function ℎ: [0,1] → (0,1). 

 

 

a) 𝑓: (0,1) → ℝ , 𝑥 ↦
𝑥−1 2⁄

𝑥(1−𝑥)
 is continuous for 0 < 𝑥 < 1 with  

 𝑓′(𝑥) =
(𝑥−1 2⁄ )2+1 2⁄

𝑥2(𝑥−1)2
> 0 ⟹ 𝑓 is strictly increasing ⟹ 𝑓 is injective. 

 

  lim
𝑥→0+

𝑓(𝑥) = −∞ and lim
𝑥→1−

𝑓(𝑥) = +∞. 

 The intermediate value theorem for continuous functions ⟹ 𝑓 is surjective. 

 

 𝑓: (0,1) → ℝ is bijective ⟹ {𝑥 ∈ ℝ|0 < 𝑥 < 1} and ℝ have the same cardinality, |ℝ| = |(0,1)|. 

 

 Another example based on tan(𝑥) and domain (−
𝜋

2
,
𝜋

2
) is 𝑓: (0,1) → ℝ, 𝑥 ↦ tan (

𝑥

𝜋
+
𝜋

2
). 

 

b) For a finite set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑁} there is a one-to-one map between subsets and  

 elements of {0,1}𝑁, 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑁} ∈ {0,1}
𝑁 corresponds to {𝑎𝑖 ∈ 𝐴|𝑥𝑖 = 1}. 

   |𝒫(𝐴)| = |{0,1}𝑁 | = 2𝑁 > 𝑁 = |𝐴| 

 ( {0,1}∞ ⟷ binary representations of 𝑥 ∈ (0,1) ⟹  |{0,1}∞| = |(0,1)| = |ℝ| ) 

  

 For an infinite set |𝐴| < |𝒫(𝐴)| iff there is no surjective function 𝑓: 𝐴 → 𝒫(𝐴) 

 |𝐵| ≤ |𝐴| iff |𝐵| ≤ |𝐴| iff |𝐴| < |𝐵| iff 

 ∃𝑓: 𝐵 → 𝐴 and          ⇔ ∃𝑔: 𝐴 → 𝐵 and       ⇔ ¬∃𝑔: 𝐴 → 𝐵 and 

 𝑓 injecive  𝑔 surjective 𝑔 surjective 

 Assume there is a surjective 𝑓: 𝐴 → 𝒫(𝐴), 𝑏 = {𝑥 ∈ 𝐴|𝑥 ∉ 𝑓(𝑥)} is an element of 𝒫(𝐴). 

 𝑓 surjective ⇒ ∃𝑎 ∈ 𝐴: 𝑓(𝑎) = 𝑏. 𝑎 ∈ 𝑓(𝑎) = 𝑏 ⇒ 𝑎 ∉ 𝑓(𝑎)  contradiction 

  𝑎 ∉ 𝑓(𝑎) = 𝑏 ⇒ 𝑎 ∈ 𝑓(𝑎)  contradiction 

 All alternatives leads to contradiction, no surjective 𝑓: 𝐴 → 𝒫(𝐴) exists ⇒ |𝐴| < |𝒫(𝐴)|. 

 

 |𝐴| < |𝒫(𝐴)| is called Cantor’s theorem. The proof used a diagonal argument, like the one 

 used to prove that ℝ is uncountable by constructing a number outside of any possible listing. 

 

c) |𝐴| ≤ |𝐵| and |𝐵| ≤ |𝐴| implies that there exists injective functions 𝑓: 𝐴 → 𝐵 

  𝑔: 𝐵 → 𝐴 

  Find a bijective function ℎ: 𝐴 → 𝐵
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𝑓: [0,1] → (0,1) 𝑔: (0,1) → [0,1]

 𝑦 = 𝑥 2⁄ + 1 4⁄ 𝑥 = 𝑦 2 + 1 4⁄⁄

𝑓([0,1]) = [
1

4
,
3

4
] 𝑔((0,1)) = (

1

4
,
3

4
)

 𝑓−1: 𝑥 = 2𝑦 − 1 2⁄ 𝑔−1: 𝑦 = 2𝑥 − 1 2⁄

 

ℎ(𝑥) = {

𝑓(𝑥) if 𝑥 ∈ 𝛼odd
𝑔−1(𝑥) if 𝑥 ∈ 𝛼𝑒𝑣𝑒𝑛
1 2⁄  if 𝑥 = 1 2⁄

 

  

 

  

 

  

 

 

 

 

 

 

 

 ℎ𝑛(𝑥) = {
𝑓(𝑥) if 𝑥 ∈ 𝛼2𝑘+1   (𝑘 ∈ ℕ0) 

 𝑔−1(𝑥) if 𝑥 ∈ α2k (𝑘 ∈ ℕ1)
         ℎ𝜔(𝑥) = 𝑓(𝑥) if  𝑥 ∈ 𝛼𝜔 

 

 From the construction it follows that ℎ𝑛: 𝐴 ∖ 𝛼𝜔 → 𝐵 − 𝛽𝜔 is a bijective function. 

 ℎ𝜔: 𝛼𝜔 → 𝛽𝜔 is well-defined on 𝛼𝜔. 

 ℎ𝜔(𝑥) ∈ 𝛽𝜔 since ℎ𝜔(𝑥) ∉ 𝛽𝜔 ⇒
𝑓−1(𝑥) ∈ 𝐴 ∖ 𝛼𝜔

or
𝑔(𝑥) ∈ 𝐴 ∖ 𝛼𝜔

} ⇒ 𝑥 ∉ 𝛼𝜔 contradiction, so ℎ(𝑥) ∈ 𝛽𝜔 

 Injectivity of ℎ𝜔 is inherited from 𝑓. 

 Surjectivity: 𝑦 ∈ 𝛽𝜔, assume 𝑥 = 𝑓−1(𝑦) ∉ 𝛼𝜔 ⇒
𝑓(𝑥) = 𝑦 ∉ 𝛽𝜔

or
𝑔−1(𝑥) = 𝑦 ∉ 𝛽𝜔

} contradiction, so 𝑓−1(𝑦) ∈ 𝛼𝜔 

 ℎ: 𝐴 → 𝐵, 𝑥 ↦ {
ℎ𝑛(𝑥) if 𝑥 ∈ 𝐴 ∖ 𝛼𝜔
ℎ𝜔(𝑥) if 𝑥 ∈ 𝛼𝜔 

 is a bijection ⟹ |𝐴| = |𝐵| 

d) 

  

𝐴 = 𝐴1 ↓ 

𝑔(𝐶1) = 𝐴2 ↓ 

𝑔(𝐶2) = 𝐴3 ↓ 

↓ 𝐵1 = 𝐵 

↓ 𝐵2 = 𝑓(𝐴1) 

↓ 𝐵3 = 𝑓(𝐴2) 

⋂ 𝐴𝑛
𝑛∈ℤ+

= 𝛼𝜔 ↓ ↓ 𝛽𝜔 = ⋂ 𝐵𝑛
𝑛∈ℤ+

 

𝑔(𝐶3) = 𝐴4 ↓ ↓ 𝐵4 = 𝑓(𝐴3) 

↓ 𝐵5 = 𝑓(𝐴4) 𝑔(𝐶4) = 𝐴5 ↓ 

 Construct partitions of 𝐴 and 𝐵: 

 𝐴1 = 𝐴 𝐵1 = 𝐵 

 𝐴𝑛+1 = 𝑔(𝐵𝑛) 𝐵𝑛+1 = 𝑓(𝐴𝑛) 

 𝛼𝑛 = 𝐴𝑛 ∖ 𝐴𝑛+1 𝛽𝑛 = 𝐵𝑛 ∖ 𝐵𝑛+1 

 𝛼𝜔 = 𝐴 ∖ ⋃ 𝛼𝑛
∞
𝑛=1  𝛽𝜔 = 𝐵 ∖ ⋃ 𝛽𝑛

∞
𝑛=1  

 From their construction we get: 

 (𝛼𝑛)1
∞ and 𝛼𝜔 is a partition of 𝐴. 

 (𝛽𝑛)1
∞ and 𝛽𝜔 is a partition of 𝐵. 

𝑓 

𝐴 𝐵 

𝑓 𝑔 

1

4
 

 

2

4
 

 

3

4
 

 

1 

 

0 

 

1

4
 

 

2

4
 

 

3

4
 

 

1 

 

1

4
 

 

2

4
 

 

3

4
 

 

1 

 

1

4
 

 

2

4
 

 

3

4
 

 

1 

 

0 

 

𝑓: [0,1] → [
1

4
,
3

4
] 

𝑔
: (0
,1
)
→
(
14 ,
34 ) 

𝑥 𝑥 

𝑦 𝑦 
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3.6 Prove the binomial identities. 

1. (
𝑛
𝑘
) = (

𝑛
𝑛 − 𝑘

) 2.(
𝑛
𝑘
) =

𝑛

𝑘
(
𝑛 − 1
𝑘 − 1

) 

3. (
𝑛
𝑘
) = (

𝑛 − 1
𝑘 − 1

) + (
𝑛 − 1
𝑘
) 4. (

𝑛
𝑚
) (
𝑚
𝑘
) = (

𝑛
𝑘
) (
𝑛 − 𝑘
𝑚 − 𝑘

) 

5. ∑ (
𝑛
𝑘
) = 2𝑛𝑛

𝑘=0  6. ∑ (−1)𝑘 (
𝑛
𝑘
) = 0𝑛

𝑘=0  

7. ∑ (
𝑚
𝑟
) = (

𝑛 + 1
𝑟 + 1

)𝑛
𝑚=0  8. ∑ (

𝑚
𝑘
) (

𝑛
𝑟 − 𝑘

) = (
𝑚 + 𝑛
𝑟

)𝑟
𝑘=0  

1
1 1

1 1
1 1

1 1

  →    

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

 

 

1.  (
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
= (

𝑛
𝑛 − 𝑘

)  

Every subset with 𝑘 elements corresponds to a subset with 𝑛 − 𝑘 elements. 

Pascal’s triangle is horizontally symmetric. 

2.   (
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
=

𝑛⋅(𝑛−1)!

𝑘⋅(𝑘−1)!(𝑛−𝑘)!
=
𝑛

𝑘
(
𝑛 − 1
𝑘 − 1

) 

3.  (
𝑛 − 1
𝑘 − 1

)
⏟    

𝐴

+ (
𝑛 − 1
𝑘
)

⏟    
𝐵

=
(𝑛−1)!

(𝑘−1)!(𝑛−𝑘)!
+

(𝑛−1)!

𝑘!(𝑛−𝑘−1)!
=
𝑘(𝑛−1)!+(𝑛−𝑘)(𝑛−1)!

𝑘!(𝑛−𝑘)!
= (

𝑛
𝑘
) 

𝐴 is the number of subsets with 𝑘 elements containing a specified element 

and 𝐵 is the number of subsets not containing that element, 

together they form all subsets of 𝑘 elements from a set with 𝑛  elements. 

This is the defining relation behind Pascal’s triangle. 

4.  (
𝑛
𝑚
)(
𝑚
𝑘
) =

𝑛!

𝑚!(𝑛−𝑚)!
⋅

𝑚!

𝑘!(𝑚−𝑘)!
=

𝑛!

𝑘!(𝑛−𝑘)!
⋅

(𝑛−𝑘)!

(𝑛−𝑚)!(𝑚−𝑘)!
= (

𝑛
𝑘
) (
𝑛 − 𝑘
𝑚 − 𝑘

) 

(
𝑛
𝑚
)(
𝑚
𝑘
) ways to first pick a subset with 𝑚 elements and then choose 

a subset of that subset with 𝑘 elements. Each chosen set will be double- 

counted by a factor (
𝑛 − 𝑘
𝑚 − 𝑘

) → (
𝑛
𝑘
) = (

𝑛
𝑚
) (
𝑚
𝑘
) / (

𝑛 − 𝑘
𝑚 − 𝑘

) 

5.  2𝑛 = (1 + 1)𝑛 = ∑ (
𝑛
𝑘
)1𝑘1𝑛−𝑘 =𝑛

𝑘=0 ∑ (
𝑛
𝑘
)𝑛

𝑘=0     Sum of elements in a row of Pascal’s triangle 

The sum counts all possible subsets of a set of 𝑛 elements, i.e. 2𝑛. 

6.  0 = (1 − 1)𝑛 = ∑ (
𝑛
𝑘
) (−1)𝑘1𝑛−𝑘 =𝑛

𝑘=0 ∑ (−1)𝑘 (
𝑛
𝑘
)𝑛

𝑘=0  

 ∑ (−1)𝑘 (
𝑛
𝑘
) = 0𝑛

𝑘=0 ⟷∑ (
𝑛
𝑘
) = ∑ (

𝑛
𝑘
)𝑘 is odd𝑘 is even  

 
#even subsets of 𝑆𝑛 = #odd subsets of 𝑆𝑛−1⏟              

𝑆1 object included

+ #even subsets of 𝑆𝑛−1⏟              
𝑆1 object excluded

#odd subsets of 𝑆𝑛 = #even subsets of 𝑆𝑛−1 + #odd subsets of Sn−1

        ถ 

        ถ         ถ 
        ถ         ถ         ถ 

+ 

+ + 

+ + + 

𝑘 
𝑛 − 𝑘 

|𝑆𝑒𝑡| = 𝑛 

1 𝑛 − 1 

𝑘 

𝑛 

𝑛 − 𝑘 

𝑚− 𝑘 

 
𝑆𝑛−1 𝑆1 

(𝑥 + 𝑦)0 = 1

(𝑥 + 𝑦)1 = 𝑥 + 𝑦

(𝑥 + 𝑦)2 = 𝑥2 + 2𝑥𝑦 + 𝑦2

(𝑥 + 𝑦)3 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3

(𝑥 + 𝑦)4 = 𝑥4 + 4𝑥3𝑦 + 6𝑥2𝑦2 + 4𝑥𝑦3 + 𝑦4
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𝑟 − 𝑘 

7. Proof by induction 

𝑛 = 0: (
0
𝑟
) = (

1
𝑟 + 1

)  

Both sides equals 𝛿𝑟0. 

 

 

 

8.  Show ∑ (
𝑚
𝑘
) (

𝑛
𝑟 − 𝑘

) = (
𝑚 + 𝑛
𝑟

)𝑟
𝑘=0  

Divide 𝑆𝑚+𝑛 in two parts, 𝐴 and 𝐵. 

All subsets of 𝑆𝑚+𝑛with 𝑟 elements have 

𝑘 elements in 𝐴, and 𝑟 − 𝑘 elements in 𝐵 

for some 0 ≤ 𝑘 ≤ 𝑟. Sum them up  

 

 

 

 

 

 

  

3.7 Prove the multinomial theorem: 

(𝑥1 + 𝑥2 +⋯+ 𝑥𝑚)
𝑛 = ∑ (

𝑛
𝑘1, 𝑘2, … , 𝑘𝑚

) 𝑥1
𝑘1𝑥2

𝑘2 …𝑥𝑚
𝑘𝑚

𝑘1 +⋯+ 𝑘𝑚 = 𝑛

 

 

(𝑥1 + 𝑥2 +⋯+ 𝑥𝑚) ⋅ … ⋅ (𝑥1 + 𝑥2 +⋯+ 𝑥𝑚) , 𝑛 factors 

Using the distributive property of numbers gives a sum of terms 𝑥1
𝑘1𝑥2

𝑘2 …𝑥𝑚
𝑘𝑚 . 

Each parentheses contributes one 𝑥𝑖  so 𝑘1 + 𝑘2 +⋯+ 𝑘𝑚 = 𝑛. 

Pick 𝑥1 from 𝑘1 parentheses out of 𝑛, then pick 𝑘2 from remaining 𝑛 − 𝑘1, …. 

(
𝑛
𝑘1
) ⋅ (

𝑛 − 𝑘1
𝑘2

) ⋅ (
𝑛 − 𝑘1 − 𝑘2

𝑘2
) ⋅ … ⋅ (

𝑘𝑚
𝑘𝑚
) =

𝑛!

𝑘1!(𝑛−𝑘1)!
⋅

(𝑛−𝑘1)!

𝑘2!(𝑛−𝑘1−𝑘2)!
⋅ … ⋅

𝑘𝑚!

𝑘𝑚!0!
= (

𝑛
𝑘1, 𝑘2, … , 𝑘𝑚

)  

 

 

 

 

 

 

 

 

 

 

Trinomial coefficients for (𝑥 + 𝑦 + 𝑧)𝑛 

If statement is true for 𝑛 − 1, 

 

 ∑ (
𝑚
𝑟
)𝑛−1

𝑚=0 = (
𝑛

𝑟 + 1
)

∑ (
𝑚
𝑟
)𝑛−1

𝑚=0 + (
𝑛
𝑟
) = (

𝑛
𝑟 + 1

) + (
𝑛
𝑟
)

∑ (
𝑚
𝑟
)𝑛

𝑚=0 = (
𝑛 + 1
𝑟 + 1

)   then it is true for 𝑛.

 

 

𝑘 

𝑚 𝑛 

Pascal’s triangle with 

binomial coefficients 

n-choose-k 
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{
4
1
} = 1 

{
4
2
} = 7 

{
4
3
} = 6 

{
4
4
} = 1 

3.8 Stirling numbers {
𝑛
𝑘
} of the second kind are defined as the number of ways 

 to partition a set of 𝑛 objects 𝑆𝑛 = {1,2, … , 𝑛} into 𝑘 non-empty subsets. 

 Show that k!{
𝑛
𝑘
} equals the number of surjective functions 𝑓: 𝑆𝑛 → 𝑆𝑘 and that 

  

 

 

Each surjective function 𝑓: 𝑆𝑛 → 𝑆𝑘 belongs to a 

partition 𝑆𝑛 = ⋃ 𝑃𝑖
𝑘
𝑖=1  and  𝑓(𝑃𝑖) = {𝑗} where  

each 𝑗 ∈ 𝑆𝑘 is in the image of some partition set. 

The number of partitions is {
𝑛
𝑘
}, by definition. 

There are 𝑘! possible surjective functions for each 

partition (by permuting the values 𝑗 ∈ 𝑆𝑘). 

 

∴ There are 𝑁 = 𝑘! {
𝑛
𝑘
} surjective functions 𝑓: 𝑆𝑛 → 𝑆𝑘. 

 

Let’s count them in another way. A combinatorial problem of counting that leads to a sum with 

terms of alternating signs suggests that the inclusion-exclusion principle might be involved. 

Let {𝑇𝑗|1 ≤ 𝑗 ≤ 𝑛} be a collection of sets. The number of elements in their union is: 

| ⋃ 𝑇𝑗

𝑛

𝑗 = 1

| = ∑ [(−1)𝑘+1 ( ∑ |𝑆𝑗1 ∩ …∩ 𝑆𝑗𝑘|

1 ≤ 𝑗1 < ⋯ < 𝑗𝑘 ≤ 𝑛

)]

𝑛

𝑘 = 1

 

Let 𝑋 be the set of functions 𝑓: 𝑆𝑛 → 𝑆𝑘 , |𝑋| = 𝑘
𝑛 and 

let 𝑋𝑗 = {𝑓: 𝑆𝑛 → 𝑆𝑘|𝑓(𝑆𝑛) ∩ {𝑗} = ∅}  ( 𝑗 is not in the image set of 𝑓 ) 

The number of surjective functions 𝑓: 𝑆𝑛 → 𝑆𝑘 is: 

         𝑁 = |𝑋 ∖⋃𝑋𝑗

𝑘

𝑗=1

| = 𝑘𝑛 − |⋃𝑋𝑗

𝑛

𝑗=1

| 

|𝑋𝑗| = (𝑘 − 1)
𝑛 and by extending this to several excluded elements gives: 

            ∑ |𝑋𝑖1 ∩ 𝑋𝑖2 ∩ …∩ 𝑋𝑖𝑘|

1≤𝑖1≤⋯≤𝑖𝑗≤𝑘

= (
𝑘
𝑗
) (𝑘 − 𝑗)𝑛 

By the inclusion-exclusion principle we get: 

      𝑁 = 𝑘𝑛 −∑(−1)𝑗+1(𝑘 − 𝑗)𝑛
𝑘

𝑗=1

=∑(−1)𝑗 (
𝑘
𝑗
) (𝑘 − 𝑗)𝑛

𝑘

𝑗=0

 

 

Finally, equating the two counts gives:

{
𝑛
𝑘
} =

1

𝑘!
∑(−1)𝑘−𝑗 (

𝑘
𝑗
) 𝑗𝑛

𝑘

𝑗=0

 

 

𝑃1 
𝑃2 

𝑃𝑘−1 

𝑃𝑘     

𝑆𝑛 

{
𝑛
𝑘
} =

1

𝑘!
∑ (−1)𝑗 (

𝑘
𝑗
) (𝑘 − 𝑗)𝑛

𝑘

𝑗 = 0
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3.9 

 

 

 

 

 

 

 

 

 

Let 𝑎𝑛 be the minimal number of moves to move 𝑛 disks from one pillar to another. 

To do this 𝑛 − 1 disks must first be moved to another pillar so that the bottom disk 

can be moved then the 𝑛 − 1 disks must be relocated to the pillar with the big disk. 

𝑎𝑛 = 2𝑎𝑛−1 + 1 

𝑎1 = 1  

Method 1 

Find the general solution to the homogenous equation and use an ansatz to find  

a particular solution to the inhomogeneous equation. 

𝑎𝑛 − 2𝑎𝑛−1 = 0 → 𝑎𝑛 = 𝐶 ⋅ 2
𝑛 

Ansatz for particular solution 𝑎𝑛 = 𝑥 → 𝑥 = 2𝑥 + 1 → 𝑥 = −1 → 𝑎𝑛 = 𝐶 ⋅ 2
𝑛 − 1 

𝑎1 = 1 → 𝐶 = 1 → 𝑎𝑛 = 2
𝑛 − 1 

Method 2 

Rewrite the recurrence relation to get a homogeneous equation and solve it by 

methods familiar from differential equations (characteristic equation). 

𝑎𝑛 = 2𝑎𝑛−1 + 1
𝑎𝑛+1 = 2𝑎𝑛 + 1

→ 𝑎𝑛+1 − 𝑎𝑛 = 2𝑎𝑛 − 2𝑎𝑛−1 →
𝑎𝑛+1 − 3𝑎𝑛 + 2𝑎𝑛−1 = 0

𝑟2 − 3𝑟 + 2 = 0 →
     
𝑟1 = 1 , 𝑟2 = 2

 

𝑎𝑛 = 𝐶11
𝑛 + 𝐶22

𝑛   
𝑎1 = 1
𝑎3 = 3

→
𝐶1 = −1
𝐶2 = 1

→ 𝑎𝑛 = 2
𝑛 − 1 

Method 3 

Use a generating function 𝐺(𝑧) for 〈𝑎𝑛〉 

〈𝑎𝑛〉 = 2〈𝑎𝑛−1〉 + 〈0,1,1,… 〉     (𝑎−1 = 0, 𝑎0 = 0, 𝑎1 = 1) →   𝐺(𝑧) = 2𝑧𝐺(𝑧) +
𝑧

1 − 𝑧
→ 

 

𝐺(𝑧) =
𝑧

(1 − 𝑧)(1 − 2𝑧)
=

𝐴

1 − 𝑧
+

𝐵

1 − 2𝑧
→
𝐴 = −1
𝐵 = 1

→ 𝐺(𝑧) =
−1

1 − 𝑧
+

1

1 − 2𝑧
→ 

 

𝐺(𝑧) = −∑ 𝑧𝑘 +∑ (2𝑧)𝑘
𝑘𝑘

→ 𝐺(𝑧) =∑ (2𝑘 − 1)𝑧𝑘 → 𝑎𝑛 = 2
𝑛 − 1

𝑘
 

The time in years to move 64 disks from one pillar to another is (264 − 1)/(60 ⋅ 60 ⋅ 24 ⋅ 365.25). 

This is 5.8 ⋅ 1011 years or 42 times the current age of the universe. The Towers of Hanoi puzzle 

with 8 disks was invented or at least popularized by French mathematician Edouard Lucas in 1883. 

He also added the mythical story Tower of Brahma with 64 disks and monks or priests constantly 

moving disks from the beginning of time to the end of time. 

According to legend there is a temple with monks and 64 golden disks 

resting on three pillars. Ancient rules dictate that a disk may never 

rest on a smaller disk. When all disks have been moved the world 

will end. They are working day and night moving one disk every 

second. What is the shortest time to move all 64 golden disks? 
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3.10 How many different messages of length 𝑛 can be built from two symbols of 

 of length 1 and length 2? 

 𝑛 = 1 , {     } 

 𝑛 = 2, {         ,         } 

 Compare the growth rate with a geometric sequence. 

 

 

Let 𝐹𝑛 be the number of messages of length 𝑛. 

Every message of length 𝑛 ends either with a short signal with 𝐹𝑛−1 possible earlier combinations or 

a long signal with 𝐹𝑛−2 possible preceding combinations. 

 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 with 𝐹0 = 0 and 𝐹1 = 1.     〈𝐹𝑛〉 = 〈0,1,1,2,3,5,8,13,21,34,… 〉 

 

𝐹𝑛 − 𝐹𝑛−1 − 𝐹𝑛−2 = 0

𝑟2 − 𝑟 − 1 = 0

𝑟 =
1 ± √5

2
𝐹𝑛 = 𝐶1𝑟1

𝑛 + 𝑐2𝑟2
𝑛

    

𝐹1 = 0
𝐹2 = 0

→
𝐶1 = 1/√5

𝐶2 = −1/√5

𝐹𝑛 = 2
−𝑛√5((1 + √5)

𝑛
− (1 − √5)

𝑛
)

 

  

 

 

 

 

 

 

 

 

 

 

If the ratio of adjacent numbers 𝐹𝑛+1/𝐹𝑛 has a limit 𝑥, it should satisfy: 

𝐹𝑛+1
𝐹𝑛

=
𝐹𝑛
𝐹𝑛
+
𝐹𝑛−1
𝐹𝑛

→ 𝑥 = 1 +
1

𝑥
 as 𝑛 → ∞  ⟹ 𝑥 =

1 + √5

2
 

lim
𝑛→∞

𝐹𝑛+1/𝐹𝑛 = lim
𝑛→∞

(1 + √5)
𝑛+1

2𝑛+1
2𝑛

(1 + √5)
𝑛 =

1 + √5

2
 

 

 

One of many formulas with Fibonacci numbers is Cassini’s identity: 

 𝐹𝑛+1𝐹𝑛−1 − 𝐹𝑛
2 = (−1)𝑛 

It can be used to construct the following rearrangement puzzles: 

Message of length 12 

The sequence known as the Fibonacci sequence was studied by Indian mathematicians long 

before Fibonacci introduced it to Europe in 1202 with an example of rabbit reproduction. 

“Towers of Hanoi”-Lucas from the previous problem studied them thoroughly. It was he who 

popularized the term “Fibonacci numbers”. He used them to prove that the 39-digit number 

2127 − 1 is a prime number. 

Pingala, Indian scholar of mathematics and Sanskrit came across Fibonacci numbers already 

in the 2nd century BC when he studied poetic metres with short and long syllables. Other 

achievements by Pingala are recursion, a binary numeral system and the binomial theorem.   

   

The Fibonacci number growth approach 

a geometric series with ratio equal to 

the golden ratio 𝜑 = (1 + √5)/2 

82 rutor 

5 ⋅ 13 rutor 
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3.11 Prove Euler-Hierholzer’s theorem from graph theory. A connected graph 𝐺 = (𝑉, 𝐸) 

 has an Euler cycle if and only if every vertex is of even degree.  

 

An Euler cycle is a path that starts and ends in the same vertex and contains every edge once. 

⟹ (Assume 𝐺 has an Euler cycle 𝛾 and show that every vertex is of even degree) 

Choose a direction for 𝛾. Every vertex 𝑣 belongs to 𝛾 and all edges incident with 𝑣 are either 

ingoing or outgoing, these sets are disjoint and of the same size so deg(𝑣) must be even. 

⟸ (Assume every vertex of 𝐺 is of even degree and show that there is an Euler cycle in 𝐺) 

Pick a vertex 𝑣1 and add edges incrementally until there are no edges to continue with. 

All vertices are of even degree ⟹ the path will end in 𝑣1, it is a cycle 𝛾1. 

If all edges in 𝐸 used, we are done. 

If not, form a subgraph 𝐻 with 𝑉 and the unused edges of 𝐸. All vertices in 𝐻 have even degree. 

If 𝛾1had no edges connecting it to 𝐻  it would be a disconnected piece of 𝐺 which is contradictory. 

Choose a vertex 𝑣2 in 𝛾1with an edge in 𝐻 and form a cycle 𝛾2 as before, starting with this edge. 

𝛾1 and 𝛾2 can be combined into one cycle 𝛾. 

If all edges are used we are done. 

If not we can form a new subgraph of unused edges and form a new cycle 𝛾3 and absorb it into 𝛾. 

The number of edges is finite, eventually all edges are used and an Euler cycle is formed. ∎ 

 

 

 

 

 

 

 

 

The corresponding question for a Hamitonian cycle has no known non-trivial condition that is both 

necessary and sufficient. A Hamitonian cycle starts and ends in the same vertex and passes each 

vertex exactly once. The name comes from William Hamilton who invented the icosian game 

where the vertices in a dodecahedron represent 20 cities and the goal of the games is to make a 

round trip along the dodecahedron edges and visit each city exactly once. (20=icosa in Greek). 

To the left a Hamiltonian cycle on a dodecahedron and 

to the right a Herschel graph which is the smallest non- 

Hamiltonian polyhedral graph. A polyhedral graph is  

based on vertices and edges of a convex polyhedron. 

If you can remove 𝑘 vertices and their incident edges and the graph become disconnected into 

𝑘 + 1 or more connected pieces then there can be no Hamiltonian cycle. (necessary condition) 

If 𝐺 is a loop-free graph with 𝑛 ≥ 3 vertices and for every pair 𝑥, 𝑦 of non-connected vertices 

deg(𝑥) + deg(𝑦) ≥ 𝑛 then there will be a Hamiltonian cycle. (sufficient condition) 

𝑣1 

𝑣2 

𝑣3 
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3.12 Show that the set of numbers ℚ[√2] ≔ {𝑞1 + 𝑞2√2|𝑞1, 𝑞2 ∈ ℚ} form a field 

 under ordinary addition and multiplication. 

 

One way is to do a direct check of all the field axioms. Another way is to establish a link to 

matrices and rely on their properties under matrix addition ⨁ and matrix multiplication ⨀, 

in the same way that complex numbers 𝑧 = 𝑎 + 𝑏𝑖 ∈ ℝ[𝑖] corresponds to 𝑧𝑀 = (
𝑎 −𝑏
𝑏 𝑎

). 

Let 𝑞 = 𝑞1 + 𝑞2√2 correspond to 𝑞𝑀 = (
𝑞1 2𝑞2
𝑞2 𝑞1

) ∈ 𝑀√2 ≔ {(
𝛼 2𝛽
𝛽 𝛼

) |𝛼, 𝛽 ∈ ℚ} 

𝑞 + 𝑟 = (𝑞1 + 𝑟1) + (𝑞2 + 𝑟2)√2 ∈ 𝑀√2  (closure under addition) 

𝑞 ⋅ 𝑟 = (𝑞1𝑟1 + 2𝑞2𝑟2) + (𝑞1𝑟2 + 𝑞2𝑟1)√2 ∈ 𝑀√2   (closure under multiplication) 

𝑞𝑀⨁𝑟𝑀 = (
𝑞1 + 𝑟1 2(𝑞2 + 𝑟2)
𝑞2 + 𝑟2 𝑞1 + 𝑟1

) = (𝑞 + 𝑟)𝑀 

𝑞𝑀⨀𝑟𝑀 = (
𝑞1 2𝑞2
𝑞2 𝑞1

)⨀(
𝑟1 2𝑟2
𝑟2 𝑟1

) = (
𝑞1𝑟1 + 2𝑞2𝑟2 2(𝑞1𝑟2 + 𝑞2𝑟1
𝑞2𝑟1 + 𝑞1𝑟2 2𝑞2𝑟2 + 𝑞1𝑟1

) = (𝑞 ⋅ 𝑟)𝑀 

 

Associative, commutative and distributive properties for addition and multiplication in ℚ[√2] 

follows from the corresponding properties of the corresponding matrix operators. 

( Matrix multiplication is generally not commutative but those in the subset 𝑀√2 are. ) 

 

The additive identity is 0 + 0√2 ∼ (
0 0
0 0

) ∈ 𝑀√2 

The multiplicative identity is 1 + 0√2 ∼ (
1 0
0 1

) ∈ 𝑀√2 

The additive inverse of 𝑞1 + 𝑞2√2 is −𝑞1 + (−𝑞2)√2 ∼ (
−𝑞1 −2𝑞2
−𝑞2 −𝑞1

) ∈ 𝑀√2 

The multiplicative inverse of 𝑞1 + 𝑞2√2 with 𝑞1, 𝑞2 ≠ 0 is (𝑞1
2 − 2𝑞2

2)−1(𝑞1 − 𝑞2√2) ∈ 𝑀√2 

|
𝑞1 2𝑞2
𝑞2 𝑞1

| = 𝑞1
2 − 2𝑞2

2 𝑞1
2 − 2𝑞2

2 = 0 ⇒ 𝑞1 𝑞2 = √2 or 𝑞1 = 𝑞2 = 0 ⁄  which is contradictory 

 

This could of course have been done much more easily by embedding ℚ[√2] in ℝ and 

showing that 𝑞 + 𝑟, 𝑞 ⋅ 𝑟, 0, −𝑞, 1, 𝑞−1 belongs to ℚ[√2] and appealing to the properties of 

commutativity, associativity and distributivity under addition and multiplication in ℝ but 

the method is useful in the search for extensions of ℂ. 

W.R. Hamilton, inventor of the icosian game extended the complex numbers into a larger but 

non-commutative field, the quaternion number system ℍ ≔ {𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}. 

Addition is defined component-wise. 𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1 ⟹ 

Multiplication is defined by the distributivity and multiplication table → 

ℍ can be embedded into 𝑀(2, ℂ) the complex 2 × 2 matrices via  

(
𝑧 𝑤
𝑤 𝑧) ,  𝑧 = 𝑎 + 𝑏𝑖 , 𝑤 = 𝑐 + 𝑑𝑖 , 𝑧 = 𝑎 − 𝑏𝑖 ,  𝑤 = −𝑐 + 𝑑𝑖.  

(
𝑧 𝑤
𝑤 𝑧)

−1

=
1

|𝑧|2 + |𝑤|2
(𝑧 −𝑤
𝑤 𝑧

)             

𝑞 = 𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌

𝑞 = 𝑎 − 𝑏𝒊 − 𝑐𝒋 − 𝑑𝒌

|𝑞|2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2
→ 𝑞−1 = 𝑞 |𝑞|2⁄  
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3.13 Show equivalence of the different definitions of multiplicity 𝑘 for roots of 𝑃(𝑧). 

 
(𝑧 − 𝛼)𝑘|𝑃(𝑧)

(𝑧 − 𝛼)𝑘+1 ∤ 𝑃(𝑧)
  ⇔   

𝑃(𝑖)(𝛼) = 0  for 𝑖 ∈ {0,1, … , 𝑘 − 1}

𝑃(𝑘)(𝛼) ≠ 0
 

 ⟹ 

𝑃(𝑧) = (𝑧 − 𝛼)𝑘𝑄0(𝑧)  with 𝑄0(𝛼) ≠ 0    ⇒ 𝑃(0)(𝛼) = 0 

𝑃′(𝑧) = (𝑧 − 𝛼)𝑘−1(𝑘𝑄0(𝑧) + (𝑧 − 𝛼)𝑄0
′ (𝑧)⏟              

𝑄1(𝑧)

)  ⇒ 𝑃(1)(𝛼) = 0 

𝑃′′(𝑧) = (𝑧 − 𝛼)𝑘−2((𝑘 − 1)𝑄1(𝑧) + (𝑧 − 𝛼)𝑄1
′(𝑧)⏟                  

𝑄2(𝑧)

) ⇒ 𝑃(2)(𝛼) = 0 

• • • 

𝑃(𝑘−1)(𝑧) = (𝑧 − 𝛼)(2𝑄𝑘−2(𝑧) + (𝑧 − 𝛼)𝑄𝑘−2
′ (𝑧)⏟                  

𝑄𝑘−1(𝑧)

) ⇒ 𝑃(𝑘−1)(𝛼) = 0 

𝑃(𝑘)(𝑧) = 1 ⋅ 𝑄𝑘−1(𝑧) + (𝑧 − 𝛼)𝑄𝑘−1
′ (𝑧)⏟                  

𝑄𝑘(𝑧)

   ⇒ 𝑃(𝑘)(𝛼) = 𝑄𝑘−1(𝛼) = 2𝑄𝑘−2(𝛼) = 

    2 ⋅ 3 ⋅ 𝑄𝑘−3(𝛼) = ⋯ = 2 ⋅ 3… ⋅ 𝑘 ⋅ 𝑄0(𝛼) ≠ 0 

⟸ 

𝑃(𝛼) = 0 ⇒    𝑃(𝑧) = (𝑧 − 𝛼)𝑅1(𝑧) 

𝑃′(𝛼) = 0 ⇒ 𝑅1(𝛼) = 0 ⇒  𝑃(𝑧) = (𝑧 − 𝛼)2𝑅2(𝑧) 

• • • 

𝑃(𝑘−1)(𝛼) = 0 ⇒ 𝑅𝑘−1(𝛼) = 0 ⇒  𝑃(𝑧) = (𝑧 − 𝛼)𝑘𝑅𝑘(𝑧) 

𝑃(𝑘)(𝛼) ≠ 0 ⇒ 𝑅𝑘(𝛼) ≠ 0 ⇒  (𝑧 − 𝛼)𝑘+1 ∤ 𝑃(𝑧) 

 

3.14 The location of a pirate treasure is described as follows: 

 Go from the gallows to the oak, turn 90 degrees to the left, 

 walk the same distance and put a knife in the ground. Go back 

 to the gallows, walk to the pine, turn 90 degrees to the right, 

 walk the same distance and put another knife in the ground. 

 Midway between the knives, dig and you will find the treasure. 

 Descendants of the pirate found the description. They went to the island and found the pine 

 and the oak but no gallows but still they could find the treasure. Describe where they found it. 

 

Introduce a complex plane and locate the real axis so that the oak is at 1 and the pine is at −1. 

  Rotate a vector by multiplying with 𝑒𝑖𝜑. 

  The location of various objects will be as follows. 

  Gallows: 𝑧 

  First knife: 𝑘1 = 1 + 𝑖(1 − 𝑧) 

  Second knife: 𝑘2 = −1 + (−𝑖)(−1 − 𝑧) 

  Treasure: 𝑇 =
1

2
(𝑘1 + 𝑘2) = 𝑖 

 

  Go from the oak towards the pine. When you are half-way, 

  turn right 90°, walk the same distance and start to dig. 
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3.15 Show 𝑒𝑧𝑒𝑤 = 𝑒𝑧+𝑤 for 𝑧, 𝑤 ∈ ℂ. 

 

𝑒𝑧 is defined by extending 𝑒𝑥 = ∑ 𝑥𝑘 𝑘!⁄∞
𝑘=0  from 𝑥 ∈ ℝ to 𝑧 ∈ ℂ. 

A series such as ∑ 𝑧𝑘 𝑘!⁄∞
𝑘=0  is said to be convergent if the partial sums 𝑆𝑛 = ∑ 𝑧𝑘 𝑘!⁄𝑛

𝑘=0  

tend to a limit 𝑆 = lim
𝑛→∞

𝑆𝑛 which means that ∀𝜀 ∈ ℝ+∃𝑛 ∈ ℕ: 𝑛 > 𝑁 ⇒ |𝑆𝑛 − 𝑆| < 𝜀. 

An infinite series ∑ 𝑎𝑛
∞
𝑛=0  converges absolutely if ∑ |𝑎𝑛|

∞
𝑛=0  is convergent. 

The terms can then be summed in any order without affecting convergence or the limit. 

The ratio test for successive terms in the exponential series gives 
|𝑎𝑛+1|

|𝑎𝑛|
=

𝑥

𝑛+1
→ 0 as 𝑛 → ∞ so 

the series is absolutely convergent for all 𝑧 ∈ ℂ, and both sides of the relation are well-defined. 

𝑒𝑧+𝑤 =∑
(𝑧 + 𝑤)𝑛

𝑛!

∞

𝑛=0

=∑
1

𝑛!
∑(

𝑛
𝑘
) 𝑧𝑘𝑤𝑛−𝑘

𝑛

𝑘=0

=∑∑
𝑧𝑘𝑤𝑛−𝑘

𝑘! (𝑛 − 𝑘)!

𝑛

𝑘=0

∞

𝑛=0

=

∞

𝑛=0

 

Setting 𝑗 = 𝑛 − 𝑘 and reshuffling the summation order gives: 

∑∑
𝑧𝑘𝑤𝑗

𝑘! 𝑗!

∞

𝑘=0

∞

𝑗=0

=∑(
𝑤𝑗

𝑗!
∑

𝑧𝑘

𝑘!

∞

𝑘=0

)

∞

𝑗=0

=∑
𝑧𝑘

𝑘!

∞

𝑘=0

⋅∑
𝑤𝑗

𝑗!

∞

𝑗=0

= 𝑒𝑧𝑒𝑤 

 

𝑒𝑧𝑒−𝑧 = 𝑒0 = 1 → 𝑒𝑧 ≠ 0 and 1 𝑒𝑧⁄ = 𝑒−𝑧 

Continuity of the conjugation operation gives 𝑒𝑧 = 𝑒𝑧 

For 𝑡 ∈ ℝ, the conjugate of 𝑒𝑖𝑡 is 𝑒−𝑖𝑡, hence |𝑒𝑖𝑡| = 1. 

𝑒𝑖𝑡 lies on the unit circle which suggest the following: 

cos 𝑧 :=
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2
 

sin 𝑧 ≔
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
 

cos 𝑧 = ℜ(𝑒𝑖𝑧) and sin 𝑧 = ℑ(𝑒𝑖𝑧) for any 𝑧 ∈ ℂ. 

With trigonometric functions defined in terms of 𝑒𝑧 

all trigonometric identities become consequences of 

𝑒𝑧𝑒𝑤 = 𝑒𝑧+𝑤 and 𝑒𝑧 = 𝑒𝑧 
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3.16 A Graeco-Latin square or an Euler square of order 𝑛 is an arrangement of symbols from 

 G = {𝛼, 𝛽, 𝛾, … } and L = {𝑎, 𝑏, 𝑐, … } with |G|=|L|=𝑛 in such a way that each cell of an 

 𝑛 × 𝑛 square contains an ordered pair (𝑔, 𝑙) ∈ G × L. Every row and every column contain 

 each element of G and each element of L exactly once and no cells contain the same pair. 

 Euler presented the problem for 𝑛 = 6 with G = {officer ranks} and L = {regiments},  

 “the thirty-six officers’ problem”. He constructed Graeco-Latin squares for 𝑛=2𝑘 + 1 and 𝑛=4𝑘 

 Euler conjectured that no Graeco-Latin squares exists for 𝑛=4𝑘 + 2. Show that he was wrong! 

 

 A similar problem with 𝑛=4 and 16 playing cards, G = {A, K, Q, J} and L = {,,,} 

 has an extra constraint; each diagonal should also contain all four face values and 

 all four suits. How many solutions are there?
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3.17 Show that the three altitudes of a triangle 

 have one point in common, (the orthocenter). 

 

   Select a point O as origin. 

   Let H be the intersection of AHA and BHB. 

   (1) AH⊥BC ⇒ (OH−OA)⋅(OC−OB)=0 

   (2) BH⊥AC ⇒ (OH−OB)⋅(OC−OA)=0 

 

   Subtract equation (1) from equation (2) and expand. 

   OH⋅OB+OA⋅OC−OH⋅OA−OB⋅OC=0 

   OH⋅(OB−OA)+OC⋅(OA−OB)=0 

   (OH−OC)⋅(OB−OA)= 0 ⇒ CH⊥AB ⇒ H lies on CHC 

 

3.18 Show that orthocenter, centroid and circumcenter of a non-equilateral triangle are collinear.

A 

B 

C 
HB 

HA 
H 

• 
• 

O HC 

The midpoint triangle DEF is similar to triangle ABC. 

DEF~ABC in scale 1:2. 

• Orthocenter=Altitude center (Â) 

• Centroid=Geometric center (Ĝ) 

• Circumcenter (Ĉ) of ABC = Altitude center of DEF 

Proof of BÂĜ~EĈĜ: 

ÂB ∥ EĈ ⇒ ∠ÂBĜ = ∠ĈEĜ 

Geometric center has ‖BĜ‖ = 2‖ĜE‖ 

BÂ and EĈ are corresponding segments 

from vertex to altitude center in similar 

triangles of ratio 2:1 so ‖BÂ‖ = 2‖EĈ‖. 

 

∴ BÂĜ~EĈĜ 

A 

B 

C 

D 

E 

F 

• 

• 

• 

Â 

Ĝ 

Ĉ 

BÂĜ~EĈĜ  ⇒ ∠ÂĜB = ∠ĈĜ𝐸 ⇒ Â, Ĝ and Ĉ are collinear. 

The line that they sit on is called Euler’s line. 
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0 1 
1 

1 

• 

1 

1 
ℝ 

ℝ2 ℝ3 

3.19. Explore how the radius varies with dimension for a sphere that is squeezed 

 in between spheres centered at integer coordinates ℤ𝑛 in ℝ𝑛. 

 

 

 

 

 

 

The sphere at the center of the 𝑛-cube is touches the spheres centered 

at the corners of the unit 𝑛-cube. 

Length of space diagonal in 𝑛 dimensions: √12 +⋯+ 12⏟        
𝑛 terms

= √𝑛  

 

 

 

 

 

As the dimension increases the inner sphere will grow without limit in the axis directions 

but its center will always stay half a unit from the vertices of the 𝑛-cube. 

In 4 dimensions 𝑛 = 4 and 𝑟 = ½. The inner sphere will reach the faces of the 4-cube and 

it will be tangential to the 16 spheres at the vertices and 8 spheres in the x,y,z,w-directions. 

This arrangement is the answer in four dimensions to the kissing number problem: 

How many non-overlapping unit spheres can be arranged so that they each touch another unit sphere? 

The answer is only known for a few dimensions, for other dimensions there is upper and lower bounds. 

Dimension 
Lower 
bound 

Upper 
bound 

1 2 

2 6 

3 12 

4 24 

5 40 44 

6 72 78 

7 126 134 

8 240 

24 196,560 

 

The known solutions for 8 and 24 dimensions correspond to the E8 lattice and the Leech lattice. 

The 4-dimensional regular arrangement is also the answer to the problem of finding the 

densest possible arrangement of 4-spheres in 4 dimensions, the hypersphere packing problem. 

The densest regular sphere packing problem is solved for dimensions 1 to 8 and 24. 

With irregular packings included the answer is only proved for dimensions 1, 2, 3, 4, 8 and 24.

O 

A 

1

2
 

1

2
 

A O • • 

√𝑛 

𝑟 

The radius of the inner sphere is: 

𝑟 =
√𝑛−1

2
→ ∞ as 𝑛 → ∞  

Strictly increasing while spheres at 

the vertices are fixed with 𝑟 = ½. 

 

Kissing number growth, probably exponential. 
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3.20. 𝑓: 𝑋 → 𝑌 is a function between two metric spaces with  ‖𝑎 − 𝑏‖ = 𝑑(𝑎, 𝑏) 

 Show that the following definitions of lim
𝑥→𝑥0

𝑓(𝑥) = 𝑦0  are equivalent. 

 A. For every 𝜖 > 0 there is a 𝛿 > 0 such that 0 < ‖𝑥 − 𝑥0‖𝑋 < 𝛿 ⟹ ‖𝑓(𝑥) − 𝑦0‖𝑌 < 𝜖  

 B. For every neighborhood 𝒱 of 𝑦0there is a punctured neighborhood 𝒰 of 𝑥0 s.t. 𝑓(𝒰) ⊆ 𝒱 

 

 

 

Assume A  

𝒱 nh of 𝑦0 ⇒ ∃ os 𝒱0 ⊆ 𝒱 with 𝑦0 ∈ 𝒱0  ⇒ 𝑦0 ip of 𝒱0  ⇒  ∃𝜖
′ > 0 ∶ B𝜖′(𝑦0) ⊆ 𝒱0  ⟹ (By A) 

∃𝛿′ > 0 : (0 ≤ ‖𝑥 − 𝑥0‖𝑋 < 𝛿
′ ⇒ ‖𝑓(𝑥) − 𝑦0‖𝑌 < 𝜖

′)⏟                            
pnh of 𝑥0 (=𝒰) mapped into B𝜖′(𝑦0)⊆𝒱0⊆𝒱

⟹ ∃ pnh 𝒰 of 𝑥0 s.t 𝑓(𝒰) ⊆ 𝒱 

so A⇒B 

 

Assume B  

𝜖 > 0 ⇒ B𝜖(𝑦0) nh of 𝑦0  ⟹ (By B) ∃ pnh 𝒰 of 𝑥0 s.t. 𝑓(𝒰) ⊆ B𝜖(𝑦0)  ⟹ 

[ N.B. If 𝑥0 is added to 𝒰 there is an open set containing 𝑥0 inside 𝒰 i.e. 𝑥0 is an interior point,  

   it has a punctured open ball around 𝑥0 mapped into B𝜖(𝑦0) ] 

∃𝛿 > 0 ∶  (0 < ‖𝑥 − 𝑥0‖𝑋 < 𝛿 ⟹ ‖𝑓(𝑥) − 𝑦0‖𝑌 < 𝜖) 

 

so B⇒A                  A⇒B and B⇒A so A⇔B 

 

3.21 Show that if lim
𝑥→𝑐

𝑓(𝑥) = 𝐴 and lim
𝑥→𝑐

𝑔(𝑥) = 𝐵 then 

𝑎) lim
𝑥→𝑐
(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝐴 ⋅ 𝐵 

𝑏) lim
𝑥→𝑐
(𝑓(𝑥)/𝑔(𝑥)) = 𝐴/𝐵   if 𝐵 ≠ 0 

Lemma. 

If  ∀𝜖 > 0 ∃𝛿 > 0 ∶ 0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − 𝑦0| < 𝑀 ⋅ 𝜖  for some 𝑀 ∈ ℝ+then 

     ∀𝜖′ > 0 ∃𝛿′ > 0 ∶ 0 < |𝑥 − 𝑥0| < 𝛿
′⟹ |𝑓(𝑥) − 𝑦0| < 𝜖

′    

Proof 

For a given 𝜖′ in the last statement let 𝜖 = 𝜖′/𝑀 in the first statement and 

then choose 𝛿′ for the last statement as the existing 𝛿 from the first statement. ∎ 

 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐴 ↔  ∀𝜖 > 0 ∃𝛿 > 0 ∶ 0 < |𝑥 − 𝑐| < 𝛿 ⟹ |𝑓(𝑥) − 𝐴| < 𝜖   (∗) 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐵 ↔  ∀𝜖 > 0 ∃𝛿 > 0 ∶ 0 < |𝑥 − 𝑐| < 𝛿 ⟹ |𝑔(𝑥) − 𝐵| < 𝜖   (∗∗) 

 

a) 

Show: ∀𝜖 > 0 ∃𝛿 > 0 ∶ 0 < |𝑥 − 𝑐| < 𝛿 ⟹ |𝑓(𝑥)𝑔(𝑥) − 𝐴𝐵| < 𝜖 

|𝑓(𝑥)𝑔(𝑥) − 𝐴𝐵| = |𝑓(𝑥)𝑔(𝑥) − 𝐵𝑓(𝑥) + 𝐵𝑓(𝑥) − 𝐴𝐵| ≤ |𝑓(𝑥)(𝑔(𝑥) − 𝐵)| + |𝐵(𝑓(𝑥) − 𝐴)| ≤ 

Pick 𝛿1 s.t. |𝑓(𝑥) − 𝐴| < 1 ⇒  |𝑓(𝑥)| ≤ |𝐴| +  1   

Pick 𝛿2 s.t. |𝑔(𝑥) − 𝐵| < 𝜖   

Pick 𝛿3 s.t. |𝑓(𝑥) − 𝐴| < 𝜖

nh ≡ neighborhood pnh ≡ punctured neighborhood os ≡ open set ip ≡ interior point 
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With 𝛿 = min(𝛿1, 𝛿2, 𝛿3)   0 < |𝑥 − 𝑐| < 𝛿 ⟹ 

|𝑓(𝑥)𝑔(𝑥) − 𝐴𝐵| ≤ (|𝐴| + 1)𝜖 + |𝐵|𝜖 ≤ (|𝐴| + |𝐵| + 1)𝜖 = 𝑀 ⋅ 𝜖  for some 𝑀 ∈ ℝ+ 

 

Using the lemma: 

∀𝜖′ > 0 ∃𝛿′ > 0 ∶ 0 < |𝑥 − 𝑥0| < 𝛿
′⟹ |𝑓(𝑥)𝑔(𝑥) − 𝐴𝐵| < 𝜖′ which means 

lim
𝑥→𝑐
(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝐴 ⋅ 𝐵 

 

b) 

lim
𝑥→𝑐
(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝐴 ⋅ 𝐵  and lim

𝑥→𝑐
(𝑓(𝑥)/𝑔(𝑥)) = 𝐴/𝐵   with 𝐵 ≠ 0 

 

Show lim
𝑥→𝑐

1/𝑔(𝑥) = 1/𝐵 , then the rest will follow from the prof of exercise a)  

Pick 𝛿1 s.t. 0 < |𝑥 − 𝑐| < 𝛿1  ⇒  |𝑔(𝑥)| > |𝐵|/2    (  by (∗∗) and 𝐵 ≠ 0 ) 

Pick 𝛿2 s.t. 0 < |𝑥 − 𝑐| < 𝛿2  ⇒  |𝑔(𝑥) − 𝐵| < 𝜖 

With 𝛿 = min(𝛿1, 𝛿2)  0 < |𝑥 − 𝑐| < 𝛿 ⟹ 

|
1

𝑔(𝑥)
−
1

𝐵
| = |

𝐵 − 𝑔(𝑥)

𝐵 ⋅ 𝑔(𝑥)
| ≤

2|𝐵 − 𝑔(𝑥)|

|𝐵|2
= 𝑀 ⋅ 𝜖  for some 𝑀 ∈ ℝ+ 

 

Using the lemma gives lim
𝑥→𝑐

1/𝑔(𝑥) = 1/𝐵  and by the proof of exercise a) lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
=
𝐴

𝐵
 

 

 

3.22 ? 
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3.23 Is there a function 𝑓 ∈ C0(ℝ) such that 𝑓 is continuous on ℚ but not on ℝ ∖ ℚ? 

 

 

Let 𝑆𝑐(𝑓) be the set of continuity points and look for a function with 𝑆𝑐(𝑓) = ℚ.   

Thomae’s function has 𝑆𝑐(𝑓) equal to the set of irrationals, ℝ ∖ ℚ 

 

                     𝑓(𝑥) = {
1 if 𝑥 = 0
1/𝑞 if 𝑥 = 𝑝/𝑞  in reduced form 
0 if 𝑥 ∈ ℝ ∖ ℚ 

 

 

It is much harder to find a function with 𝑆𝑐(𝑓) = ℚ , continuous on a countable dense set since the 

disruptive points of discontinuity are more numerous. The irrationals are both dense and uncountable. 

There is no such function. 

 

Outline of proof: 

If 𝑆𝑐(𝑓) is both dense and countable then there will be nested sequence of intervals 

such that variations of 𝑓 in 𝐼𝑛 tends to zero and ∀𝑥 ∈ 𝑆𝑐(𝑓)∃𝑁 ∶ 𝑛 > 𝑁 ⇒ 𝑥 ∉ 𝐼𝑛. 

This implies existence of a limit point 𝑦 ∈ ⋂ 𝐼𝑛
∞
𝑛=1  that must belong to 𝑆𝑐 which is a contradiction. 

 

Assume a function s.t. 𝑆𝑐(𝑓) is dense and countable 𝑆𝑐(𝑓) = {𝑐𝑖|𝑖 ∈ ℤ
+}. 

Let (𝜖𝑖)𝑖=1
∞ be a positive sequence 𝜖𝑖 > 0 s.t. lim

𝑖→∞
𝜖𝑖 = 0. 

Define inductively a sequence of closed nested intervals (𝐼𝑖)𝑖=1
∞ . 

From continuity at 𝑐1 we can pick a closed interval 𝐼1 around 𝑐1 

s.t. ∀𝑥 ∈ 𝐼1 ∶  |𝑓(𝑥) − 𝑓(𝑐1)| < 𝜖1. 

When 𝐼𝑘 is defined, define 𝐼𝑘+1 as: 

If 𝑐𝑘+1 ∉ 𝐼𝑘 → 𝐼𝑘+1 ≔ 𝐼𝑘 

If 𝑐𝑘+1 ∈ 𝐼𝑘 → Let 𝐼𝑘+1 be a closed interval s.t. 

𝑐𝑘+1 ∈ 𝐼𝑘+1 , 𝑐𝑘 ∉ 𝐼𝑘+1 and ∀𝑥 ∈ 𝐼𝑘+1 ∶  |𝑓(𝑥) − 𝑓(𝑐𝑘+1)| < 𝜖𝑘+1 

  

Each 𝐼𝑛+1 avoids 𝑐𝑛 so ⋂ 𝐼𝑛
∞
𝑛=1  and 𝑆𝑐(𝑓) are disjoint but 

as a series of closed and nested intervals ⋂ 𝐼𝑛
∞
𝑛=1 is not empty. 

𝑆𝑐(𝑓) = {𝑐1, 𝑐2, … } is a dense set which makes 𝐼𝑁 = 𝐼𝑁+1 = ⋯ an impossibility. 

If 𝑦0 ∈ ⋂ 𝐼𝑛
∞
𝑛=1 then it must be a point where 𝑓 is continuous since: 

Given 𝜖 > 0 we can choose 𝑛 s.t. 𝐼𝑛 ≠ 𝐼𝑛−1 and 𝜖𝑛 < 𝜖 2⁄ . 

𝑦0 ∈ 𝐼𝑛 so for any 𝑥 ∈ 𝐼𝑛: |𝑓(𝑥) − 𝑦0| ≤ |𝑓(𝑥) − 𝑓(𝑐𝑛)| + |𝑓(𝑐𝑛) − 𝑦0| < 𝜖𝑛 + 𝜖𝑛 < 𝜖 

so 𝑦0 is a point where 𝑓 is continuous but 𝑦0is not in the list 𝑐1, 𝑐2, … which is a contradiction. 

There can be no function 𝑓: ℝ → ℝ where the continuity points are dense and countable, such as ℚ.   ∎ 

𝐼1  
𝐼2  

𝐼3  . . . 

𝐼1 

𝐼𝑘 

𝐼𝑘+1 

𝐼𝑘+1 

𝑐𝑘+1 𝑐𝑘+1 

𝑐𝑘 

𝑐𝑘 

. . 
. 

𝑐1 
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3.24 Prove the Archimedean property for ℝ: 

 There is no positive real pair 𝑥, 𝑦 such that 𝑛 ⋅ 𝑥 < 𝑦 for every 𝑛 ∈ ℕ. 

 

Assume the Archimedean property for ℝ is false then there is: 

𝑥, 𝑦 ∈ ℝ such that 0 < 𝑥 < 𝑦 and 𝑛𝑥 < 𝑦 for every 𝑛 ∈ ℤ+. 

(𝑛𝑥)𝑛=1
∞  is upward limited and increasing, it has a least upper bound 𝑀 = sup

𝑛∈ℤ+
(𝑛𝑥). 

𝜖-characterization of the supremum with 𝜖 = 𝑥 > 0 says there must be an 𝑚 ∈ ℤ+ s.t. 

𝑚𝑥 > 𝑀 − 𝑥 but then (𝑚 + 1)𝑥 > 𝑀 contradicts that 𝑀 is the supremum of (𝑛𝑥)𝑛=1
∞  . 

 

 

3.25 Show 𝑓 continuous on [𝑎, 𝑏] ⟹ 𝑓 uniformly continuous on [𝑎, 𝑏] 

 

Assume 𝑓 continuous on [𝑎, 𝑏] 

 

If 𝑓 is not uniformly continuous on [𝑎, 𝑏] then: 

∃𝜖0 > 0 ∀𝛿 > 0  ∃𝑥0, 𝑦0 ∈ [𝑎, 𝑏] with |𝑥0 − 𝑦0| < 𝛿 and |𝑓(𝑥0) − 𝑓(𝑦0)| ≥ 𝜖0     (A) 

 

Split [𝑎, 𝑏] into two overlapping intervals 

[𝑎, 𝑐1] and [𝑐2, 𝑏] with 𝑐1 =
2

3
𝑎+

1

3
𝑏 and 𝑐2 =

1
3
𝑎+
2
3
𝑏. 

 

If (A) would apply to neither [𝑎, 𝑐2] nor [𝑐1, 𝑏] then 

 

∀𝜖 ∃𝛿0 > 0  ∀𝑥, 𝑦 ∈ [𝛼, 𝛽] with |𝑥 − 𝑦| < 𝛿0 , |𝑓(𝑥) − 𝑓(𝑦)| < 𝜖 

Then with 𝜖 = 𝜖0 and 𝛿 = min (𝛿0,
𝑏−𝑎

3
) we would get a contradiction with (A) 

so (A) applies to at least one of [𝑎, 𝑐2] and [𝑐1, 𝑏]. 

 

Iterating this procedure in a part where uniform continuity does not hold leads to a nested sequence 

of intervals 𝐼𝑘 = [𝑎𝑘, 𝑏𝑘] with |𝑓(𝑥𝑘) − 𝑓(𝑦𝑘)| ≥ 𝜖0 > 0 for every 𝑘 ∈ ℤ+ and some 𝑥𝑘, 𝑦𝑘 ∈ 𝐼𝑘.     (B) 

 

𝑏𝑘 − 𝑎𝑘 =
2

3
(𝑏𝑘−1 − 𝑎𝑘−1) →  lim

𝑘→∞
(𝑏𝑘 − 𝑎𝑘) = 0 and lim

𝑘→∞
𝑎𝑘 = lim

𝑘→∞
𝑏𝑘 = 𝜁 for some 𝜁 ∈ [𝑎, 𝑏] 

 

𝑓 is continuous at 𝜁 ⟹ lim
𝑘→∞

(𝑓(𝑥𝑘) − 𝑓(𝑦𝑘)) = 𝜁 − 𝜁 = 0 which contradicts (𝐵) 

∴ 𝑓 is uniformly continuous on [𝑎, 𝑏] ∎ 

 

 

𝑎 𝑐1 𝑐2 𝑏 1

3
 

1

3
 

1

3
 

𝑎 < 𝑐1 < 𝑐2 < 𝑏 

or 
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3.26 Assume that 𝑓: [𝑎, 𝑏] → [𝑐, 𝑑] is continuous and invertible and that 𝑓−1 is differentiable. 

 Show that: ∫ 𝑓−1(𝑦)𝑑𝑦 = 𝑦 ⋅ 𝑓−1(𝑦) − 𝐹 ∘ 𝑓−1(𝑦) + 𝐶 

 Give the equation a figurative interpretation, a proof without words. 

 

𝐷(∫𝑓−1(𝑦)𝑑𝑦) = 𝑓−1(𝑦). 

 

𝐷(𝑦 ⋅ 𝑓−1(𝑦) − 𝐹 ∘ 𝑓−1(𝑦) + 𝐶) = 𝑓−1(𝑦) + 𝑦 ⋅ 𝐷(𝑓−1(𝑦)) − 𝑓 ∘ 𝑓−1(𝑦) ⋅ 𝐷(𝑓−1(𝑦)) = 𝑓−1(𝑦) 

 

𝑓 is continuous and invertible. Assume 𝑓 increasing → 𝑓(𝑎) = 𝑐 and 𝑓(𝑏) = 𝑑. 

Integrate 𝑓−1 over [𝑐, 𝑑]: 

 

LHS: 

∫ 𝑓−1(𝑦)𝑑𝑦
𝑑

𝑐

 

 

RHS: 

[𝑦 ⋅ 𝑓−1(𝑦) − 𝐹 ∘ 𝑓−1(𝑦)]𝑐
𝑑 = 𝑑𝑏 − 𝑐𝑎 − (𝐹(𝑏) − 𝐹(𝑎)) = 𝑏𝑑 − 𝑎𝑐 − ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+ ∫ 𝑓−1(𝑦)𝑑𝑦

𝑑

𝑐

= 𝑏𝑑 − 𝑎𝑐 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The formula for the integral of an inverse function wasn’t published until 1905.
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3.27 Show that the Cantor function also known as the Devil’s staircase c: [0,1] → [0,1] 

 is increasing, surjective, continuous and has a graph of arc length 2. 𝑐(𝑥) is defined by: 

 1. Express 𝑥 in base 3 and replace all digits after the first digit=1 (if any) with zeros. 

 2. Replace all digits=2 after this with digits=1. 

 3. Reinterpret the sequence as base 2 to get 𝑐(𝑥). 

 

Increasing: 

Assume 𝑥 < 𝑦. None of the three steps to get 𝑐(𝑥) and 𝑐(𝑦) can reverse the original order of 

𝑥 and 𝑦, at most they can make the results equal so 𝑥 < 𝑦 ⇒ 𝑐(𝑥) ≤ 𝑐(𝑦). 

𝑐(𝑥) is increasing but not strictly increasing. 

Surjective: 

Any 𝑐(𝑥) = (0. 𝑥1𝑥2…)2 of [0,1] has 𝑥 = (0. �̃�1�̃�2…)3 as a preimage where all 𝑥𝑖 = 1 has been replaced 

by digits �̃�𝑖 = 2 and the others remain the same. 

Continuity: 

𝑐(𝑥) can be defined as the limit of a sequence of functions 𝑓𝑘(𝑥) defined by: 

𝑓0(𝑥) = 𝑥  

𝑓𝑘+1(𝑥) = {

0.5 ⋅ 𝑓𝑘(3𝑥)               if       0 ≤ 𝑥 ≤ 1 3⁄

0.5                               if   1/3 ≤ 𝑥 ≤ 2 3⁄

0.5 + 0.5 ⋅ 𝑓𝑘(3𝑥)    if  2/3 ≤ 𝑥 ≤ 1

  

Each 𝑓𝑘 is continuous and they converge uniformly to 𝑐(𝑥),making it continuous. 

max
𝑥∈[0,1]

|𝑓𝑘+1(𝑥) − 𝑓𝑘(𝑥)| ≤
1

2
max
𝑥∈[0,1]

|𝑓𝑘(𝑥) − 𝑓𝑘−1(𝑥)| ⇒ max
𝑥∈[0,1]

|𝑐(𝑥) − 𝑓𝑘(𝑥)| ≤ 
max
𝑥∈[0,1]

|𝑓1(𝑥) − 𝑓0(𝑥)| 

2𝑛−1
 

 

Graph of arc has length 𝐿 = 2: 

The arc length of a curve 𝑦 = 𝑓(𝑥) with 𝑎 ≤ 𝑥 ≤ 𝑏 is defined as the 

supremum of the polygonal arc length based on approximations with 

partitions {𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝑏} and segments (𝑥𝑘, 𝑦𝑘) to (𝑥𝑘+1, 𝑦𝑘+1). 

 

Each polygonal segment has √(∆𝑥)2 + (∆𝑦)2 ≤ ∆𝑥 + ∆𝑦 which for 𝑐(𝑥) puts an upper bound 𝐿 ≤ 2 

since ∑∆𝑥 = 1 and ∑∆𝑦 = 1. To find a polygonal arc with 𝐿 ≥ 2 − 𝜀 note that the sum of constant parts 

of the Cantor graph approach 1 and their complementing parts with ∑∆𝑦 = 1 are always larger than 1. 

  

If 𝑓: [0,1] → ℝ is a continuous and increasing function with 

𝑓(0) = 0 and 𝑓(1) = 1 with curve 𝛾: 𝑡 → (𝑡, 𝑓(𝑡)) , 0 ≤ 𝑡 ≤ 1: 

𝐿(𝛾) = 2 ⇔ 𝑓 is a singular function 

Singular here means non-constant and continuous on [0,1] with 

𝑓′(𝑥) = 0 almost everywhere, outside a subset of measure zero. 
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1 

3.28. Show that the area ∫ 𝑓(𝑥)
𝛽

𝛼
𝑑𝑥 for 𝑓(𝑥) = 1/𝑥 is unaffected  

 by a rescaling of boundaries [α, β] ↷ [cα, cβ]. 𝛼, 𝛽, 𝑐 ∈ ℝ+ 

 

∫
𝑑𝑥

𝑥

𝛽

𝛼

= [ln 𝑥]𝛼
𝛽
= ln 𝛽 − ln 𝛼 

∫
𝑑𝑥

𝑥

𝑐𝛽

𝑐𝛼

= [ln 𝑥]𝑐𝛼
𝑐𝛽
= ln 𝑐𝛽 − ln 𝑐𝛼 = ln 𝑐 + ln𝛽 − ln 𝑐 − ln 𝛼 = ln 𝛽 − ln 𝛼 

Any function 𝑓(𝑥) with this property of invariant area must scale inversely in the 𝑦-direction to 

compensate for the scaling in the 𝑥-direction → 𝑓(𝑥) ∝ 1/𝑥 

 

𝑔(𝑥) ∈ 𝐶1(ℝ+) can be written 𝑔(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
𝑥

1
 for some 𝑓.  

If 𝑔(𝑥) behaves like a logarithm 𝑔(𝑥𝑦) = 𝑔(𝑥) + 𝑔(𝑦) then 𝑓(𝑥) must be of the form 𝑓(𝑥) = 𝐶/𝑥. 

∫
𝐶

𝑥
𝑑𝑥

𝑥

1

= 𝐶 ln 𝑥 =
ln 𝑥

ln 𝑒1/𝐶
= log𝑒1/𝐶 𝑥 → 𝑔(𝑥) = log𝑎 𝑥 

 

3.29 Calculate the volume and area formed 

 by rotating y = 1/x around the x-axis 

 for the interval [1,∞) along the x-axis. 

 How much paint would it take to fill it 

 and how much to paint the inside? 

 

Volume: ∫ 𝜋𝑓(𝑥)2𝑑𝑥
∞

1
= ∫

𝜋

𝑥2
𝑑𝑥

∞

1
= 𝜋[−𝑥−1]1

∞ = 𝜋 

Mantel area: ∫ 2𝜋𝑓(𝑥)√1 + (𝑓′(𝑥))
2
𝑑𝑥

∞

1
= 2𝜋 ∫

1

𝑥
√1 + 𝑥−4𝑑𝑥

∞

1
> 2𝜋 ∫

𝑑𝑥

𝑥

∞

1
= 2𝜋[ln 𝑥]1

∞ = ∞ 

 

It seems that you could fill the form with finite amount of paint but no matter how thin 

your layer of paint is you could not paint the inside since the area is infinite. 

This apparent paradox is known as Toricelli’s trumpet or Gabriel’s horn. 

 

3.30 Show that the spherical law of cosines cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝐶 

 reduces to the planar law of cosines 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝐶 as 𝑎, 𝑏, 𝑐 → 0. 

 

Replace the trigonometric functions of 𝑎, 𝑏, 𝑐 with their Taylor series. 

cos 𝑎 = 1 − 𝑎2/2 + 𝑂(𝑎4) sin 𝑎 = 𝑎 + 𝑂(𝑎3) 

cos 𝑏 = 1 − 𝑏2/2 + 𝑂(𝑏4) sin 𝑏 = 𝑏 + 𝑂(𝑏3) 

cos 𝑐 = 1 − 𝑐2/2 + 𝑂(𝑐4) sin 𝑐 = 𝑐 + 𝑂(𝑐3) 

1 − 𝑐2/2 + 𝑂(𝑐4) = (1 − 𝑎2/2 + 𝑂(𝑎4))(1 − 𝑏2/2 + 𝑂(𝑏4)) + (𝑎 + 𝑂(𝑎3))(𝑏 + 𝑂(𝑏3)) cos 𝐶 → 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝐶  as 𝑎, 𝑏, 𝑐 → 0
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3.31 A pyramid has an equilateral triangle as base, the sides are isosceles triangles and 

 the height of the pyramid equals the distance between the height and the base. 

 What is the angle between two sides? 

 

The height in the base plane starts from the intersection of the medians. 

The medians intersect for any triangle in a single point which divides the median in proportions 1:2. 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the point formed by averaging over the positions of the vertices. 

OG⃗⃗⃗⃗  ⃗ =
1

3
(𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 , 𝑦𝐴 + 𝑦𝐵 + 𝑦𝐶) 

AG⃗⃗⃗⃗  ⃗𝑥 = OG⃗⃗⃗⃗  ⃗𝑥 − OA⃗⃗⃗⃗  ⃗𝑥 =
1

3
(𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶) − 𝑥𝐴 =

1

3
(−2𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶) 

AD⃗⃗⃗⃗  ⃗𝑥 = (AB⃗⃗⃗⃗  ⃗ +
1

2
BC⃗⃗⃗⃗  ⃗)

𝑥
= 𝑥𝐵 − 𝑥𝐴 +

1

2
(𝑥𝐶 − 𝑥𝐵) =

1

2
(−2𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶) 

⟹ AG⃗⃗⃗⃗  ⃗ =
2

3
AD⃗⃗⃗⃗  ⃗ ⟹

|AG|

|GD|
=
2

1
 This works for all medians and both 𝑥 and 𝑦. 

All medians pass through 𝐺, the centroid point. 

Their intersection divides each median in proportion 2:1. 

Assume |AB| = 2  Scale invariance 

|BD| =
1

2
|AB| = 1  

|GD| =
1

3
|AD| =

1

3
√22 − 12 = 1/√3 

|GH| = |GD| = 1/√3  ( Picture not drawn to scale ) 

|AH| = √(2/√3)
2
+ (1/√3)

2
= √5/3 

Find the point on BH that makes ∠AEH and ∠AEB 

right angles by introducing 𝛼 and 𝑥. 

|AE| = 𝑥  ,  |HE| = 𝛼√5/3  ,  |BE| = (1 − 𝛼) √5/3 

{
𝑥2 + 𝛼2

5

3
=
5

3
                (𝐼)

𝑥2 + (1 − 𝛼)2
5

3
= 4   (𝐼𝐼)

   (𝐼𝐼) − (𝐼) → 𝛼 = −
1

5
→ 𝑥 = √8/5 (n.b. E lies on the extension of HB) 

The law of cosines on ΔAEC gives:  4 =
8

5
+
8

5
− 2 ⋅

8

5
cos(∠AEC) → cos(∠AEC) = −

1

4
→ ∠AEC ≈ 104° 

Checking calulation 

with Mathematica 

based on coordinates 

of points and normals 

calculated from 

vector products.  
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1 3.32 Prove the spherical law of cosines 

 cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝐶. 

 

Solve by using vectors and scalar products 𝒖 ⋅ 𝒗 = ‖𝒖‖ ⋅ ‖𝒗‖ ⋅ cos 𝛼. 

Let the points A, B and C on the unit sphere be given by unit vectors 𝒖, 𝒗 and 𝒘. 

cos 𝑎 = 𝒖 ⋅ 𝒗 

cos 𝑏 = 𝒖 ⋅ 𝒘 

cos 𝑐 = 𝒗 ⋅ 𝒘 

 

cos 𝐶 = 𝒆�̃� ⋅ 𝒆�̃�     𝒆�̃�, 𝒆�̃� in the tangential plane at 𝐶 

  𝒆�̃� in (u,v)-plane and 𝒆�̃� in (u,w)-plane. 

Project 𝒗 along 𝒖 and 𝒖⊥-plane spanned by 𝒆�̃�, 𝒆�̃�. 

𝒗𝑢 = (𝒗 ⋅ 𝒖)𝒖 = cos 𝑎 ⋅ 𝒖 

𝒗𝑢⊥ = 𝒗 − 𝒗𝑢 = 𝒗 − cos 𝑎 ⋅ 𝒖    𝒗𝑢⊥ ∥ 𝒆�̃� 

 

𝒆�̃� =
𝒗𝑢⊥

‖𝒗𝑢⊥‖
=
𝒗 − cos 𝑎 ⋅ 𝒖

sin 𝑎
 

𝒆�̃� =
𝒘𝑢⊥

‖𝒘𝑢⊥‖
=
𝒘 − cos 𝑏 ⋅ 𝒖

sin 𝑏
 

 

cos 𝐶 = 𝒆�̃� ⋅ 𝒆�̃� =
1

sin 𝑎 sin 𝑏
(𝒗 − cos 𝑎 ⋅ 𝒖) ⋅ (𝒘 − cos 𝑏 ⋅ 𝒖) 

cos 𝐶 =
cos 𝑐 − cos 𝑏 cos 𝑎 − cos 𝑎 cos 𝑏 + cos 𝑎 cos 𝑏

sin 𝑎 sin 𝑏
=
cos 𝑐 − cos 𝑏 cos 𝑎

sin 𝑎 sin 𝑏
 

 

sin 𝑎 sin 𝑏 cos 𝐶 = cos c− cos 𝑎 cos 𝑏 

 

𝑐𝑜𝑠 𝑐 = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏 cos 𝐶 

 

𝐶 = 90° gives a generalization of Pythagoras theorem on a sphere, 𝑐𝑜𝑠 𝑐 = cos 𝑎 cos 𝑏.

𝒖 

𝒘 

𝒗 

𝒆�̃� 

𝒆�̃� 

𝑎 

𝑐 
𝑏 

𝐶 
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3.33 Calculate the inner angle between adjacent faces 

 in a regular dodecahedron bounded by 12 pentagons. 

 (Dodecahedron from Greek, meaning 12 faces) 

 

 

Let us assume that the edges of the dodecahedron are two units long. 

The cross-section looks like the left picture where h is the height in the pentagon and 

𝛂 is the angle we are looking for. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin 36° = 1/𝑎 

tan 36° =1/𝑏 

ℎ = 𝑎 + 𝑏 =
1

sin 36°
+

1

tan 36°
=
1 + cos 36°

sin 36°
 

Using the law of sines on the triangle containing angle : 

sin 45°

ℎ
=
sin 𝛽

1
⇒ 𝛽 = arcsin (

sin 36°

√2(1 + cos 36°) 
) 

𝛼 = 90° + 2 arcsin (
sin 36°

√2(1 + cos 36°) 
) ≈ 116.57° 
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tan arcsin 𝛼 =
𝛼

√1 − 𝛼2
 

According to Wikipedia the angle between the two faces equals 2 arctan𝜑 where 

𝜑 =
1+√5

2
 is the golden ratio. Let us see if we can prove that: 

90° + 2 arcsin(
sin 36°

√2(1 + cos36°) 
)

⏟            
𝑥

= 2arctan
1 + √5

2
 

 

 

tan(90° + 2 arcsin 𝑥) =−
1

tan(2arcsin𝑥)
 tan(2 arctan𝜑) =

2𝜑

1−𝜑2
=

1+√5

1−(6+2√5)/4
= −2 

 

 

 

tan(2 arcsin 𝑥) =
2 tan arcsin 𝑥

1 − tan2 arcsin 𝑥
=

2𝑥 √1 − 𝑥2⁄

1 − 𝑥2/(1 − 𝑥2)
=
2𝑥√1 − 𝑥2

1 − 2𝑥2
 

 

where:   𝑥 =
sin 36°

√2(1+cos36°) 
   ,  cos36° = 1+√5

4
   ,    sin 36° =

√5−√5

2√2
     (Proof given in exercise  x.x) 

 

Remains to prove:   
2𝑥√1−𝑥2

1−2𝑥2
=
1

2
 

 

Squaring both sides gives:   20𝑥4 − 20𝑥2 + 1 = 0 

where:  𝑥 =
√5−√5

2√2
⋅

1

√2(1+
1+√5
4
)
=
√5−√5

5+√5
  ⟹   𝑥2 =

5−√5

30+10√5
 

Remains to prove:  20𝑦2 − 20𝑦 + 1 = 0 

where:  𝑦 =
1

10
(
5−√5

3+√5
)    ⇒    𝑦2 =

1

20
(
3−√5

7+3√5
)   ⇒      20𝑦2 − 20𝑦 + 1 = 

 
3−√5

7+3√5
−
10−2√5

3+√5
+ 1 = 

 
(9−5)−(70−14√5+30√5−30)

21+7√5+9√5+15
+ 1 = 

 
−36−16√5

36+16√5
+ 1 = 0 

 

This concludes the proof and in the process we got another property of the golden ratio. 

tan(90° + 𝛼) = −
1

tan 𝛼
 tan 2𝛼 =

2 tan𝛼

1 − tan2𝛼
 

Golden ratio 𝜑 

2 + tan(2 arctan𝜑) = 0 
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3.34 Use the definition of the hyperbolic functions from a hyperbola to show 

 cosh𝐴 =
1

2
(𝑒𝐴 + 𝑒−𝐴) arcosh 𝑡 = ln(𝑡 + √𝑡2 − 1) 

 sinh𝐴 =
1

2
(𝑒𝐴 − 𝑒−𝐴) arsinh 𝑡 = ln(𝑡 + √𝑡2 + 1) 

 

 

 

 

 

 

 

 

 

 

 

 

Rote the unit hyperbola 45°, (
𝑥
𝑦) = (

1/√2 −1/√2

1/√2 1/√2
) (
�̃�
�̃�
) 

𝐴 = ∫
𝑑𝑥

2𝑥

𝑥2

𝑥1

=
1

2
[ln 𝑥]𝑥1

𝑥2 =
1

2
ln
𝑥2
𝑥1
=
1

2
ln (

cosh𝐴 + sinh𝐴

cosh𝐴 − sinh𝐴
) =

1

2
ln (

(cosh𝐴 + sinh𝐴)2

cosh2 𝐴 − sinh2 𝐴
) 

𝐴 = ln(cosh𝐴 + sinh𝐴) 

𝑒𝐴 = cosh𝐴 + sinh𝐴 

𝑒−𝐴 =
1

cosh𝐴 + sinh𝐴
=

cosh𝐴 − sinh𝐴

cosh2 𝐴 − sinh2 𝐴
= cosh𝐴 − sinh𝐴 

 

𝑒𝐴 + 𝑒−𝐴 = 2 cosh𝐴 →   cosh𝐴 =
𝑒𝐴 + 𝑒−𝐴

2
 

𝑒𝐴 − 𝑒−𝐴 = 2 sinh𝐴 →  sinh 𝐴 =
𝑒𝐴 − 𝑒−𝐴

2
 

𝐴 = ln(�̃� + �̃�) with �̃�2 − �̃�2 = 1        
�̃� = √�̃�2 + 1

�̃� = √�̃�2 − 1
 

�̃� = cosh𝐴 = cosh(ln(�̃� + √�̃�2 − 1))

�̃� = sinh𝐴 = sinh(ln(√�̃�2 + 1 + �̃�))
   →    

arcosh 𝑡 = ln(𝑡 + √𝑡2 − 1)

arsinh 𝑡 = ln(𝑡 + √𝑡2 + 1)
 

�̃�2 − �̃�2 = 1 

(
cosh𝐴
sinh𝐴

) 

𝐴 
�̃� 

�̃� 1

√2
(
cosh𝐴 − sinh𝐴
cosh𝐴 + sinh𝐴

) 

1

√2
(
cosh𝐴 + sinh𝐴
cosh𝐴 − sinh𝐴

) 

𝑥 

𝑦 

𝑥𝑦 = 1/2 

(
cosh(−𝐴)

sinh(−𝐴)
) 

𝑥1 = (cosh𝐴 − sinh𝐴)/√2 

𝑥2 = (cosh𝐴 + sinh𝐴)/√2 

 

𝑥1 𝑥2 
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Integration by substitution 

∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑏

𝑥𝑎
 {

𝑥 = 𝑔(𝑡)

𝑑𝑥 = 𝑔′(𝑡)𝑑𝑡
𝑥𝑎 = 𝑔(𝑡𝑎)
𝑥𝑏 = 𝑔(𝑡𝑏)

} 

= ∫ 𝑓(𝑔(𝑡))𝑔′(𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎
 

 

 
 

 

Integrals containing 𝑥2 + 𝑎2, 𝑥2 − 𝑎2 or 𝑎2 − 𝑥2 can often be solved by trigonometric substitution. 

( Hyperbolic substitution are suitable for √𝑥2 − 1 but it would become circular in this case. ) 

 

 

 

 

 

 

 

 

 

 

∫ √𝑥2 − 1𝑑𝑥
�̃�

1

{

𝑥 = sec𝜃
𝑑𝑥 = sec𝜃 tan𝜃
1 = sec0
�̃� = sec �̃�

} = ∫ tan2 𝜃 sec𝜃𝑑𝜃
�̃�

0
= ∫ (sec3 𝜃 − sec𝜃)𝑑𝜃

�̃�

0
 

 

∫ sec3 𝜃 𝑑𝜃 looks like a candidate for integration by a reduction formula. Such formulas look something 

like 𝐼𝑛 ≡ ∫𝑓(𝑛, 𝑥) 𝑑𝑥 = 𝑔(𝐼𝑘) with 𝑘 < 𝑛 where 𝑓(𝑛, 𝑥) contains a part that is raised to the power 𝑛 

which get reduced to a lower power in 𝐼𝑘. They are often derived with integration by parts (IBP). 

  

Integration by parts 

∫(𝑢′𝑣 + 𝑢𝑣′)𝑑𝑥 = 𝑢𝑣 → ∫ 𝑓(𝑥)

𝑏

𝑎

𝑔(𝑥)𝑑𝑥 = [𝐹(𝑥)𝑔(𝑥)]𝑎
𝑏 − ∫ 𝐹(𝑥)𝑔′(𝑥)𝑑𝑥

𝑏

𝑎

Solutions to mathematical problems are never 

unique. The legendary mathematician Paul Erdős 

(1913-1996) often talked about “The Book” where 

God kept one solution, the most natural and 

elegant solution to each mathematical problem. 

The previous solution might qualify as such a 

solution. A solution that would not make it to the 

book is the following one, but it is a good 

illustration of various techniques of integration. 

Calculate area A, this time without a 45° rotation. 

𝐴 = 2(
�̃��̃�

2
− ∫ √𝑥2 − 1𝑑𝑥

�̃�

1

) 

(�̃�, �̃�) = (cosh𝐴 , sinh𝐴) 

𝐴 

�̃� 

�̃� 1 

𝑥2 − 𝑦2 = 1 

𝑦 = √𝑥2 − 1 

𝜃 

𝑎 

𝑥 

𝜃 𝜃 

𝑎 

𝑎 𝑥 
𝑥 

√
𝑥
2
−
𝑎
2

 

√𝑎2 − 𝑥2 

𝑥 = 𝑎 tan𝜃 

𝑑𝑥 = 𝑎 sec2 𝜃 

√𝑥2 + 𝑎2 = 𝑎 sec 𝜃 

𝑥 = 𝑎 sec 𝜃 

𝑑𝑥 = 𝑎 sec 𝜃 tan 𝜃 

√𝑥2 − 𝑎2 = 𝑎 tan𝜃 

𝑥 = 𝑎 sin 𝜃 

𝑑𝑥 = 𝑎 cos 𝜃 

√𝑎2 − 𝑥2 = 𝑎 cos 𝜃 
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Examples of integration by reduction formulae: 

𝐼𝑛 = ∫cos
𝑛 𝑥 𝑑𝑥 → 𝐼𝑛 =

1

𝑛
cos𝑛−1 𝑥 sin 𝑥 +

𝑛 − 1

𝑛
𝐼𝑛−2

𝐼𝑛 = ∫𝑥
𝑛𝑒𝑎𝑥𝑑𝑥 → 𝐼𝑛 =

1

𝑎
(𝑥𝑛𝑒𝑎𝑥 − 𝑛𝐼𝑛−1)

𝐼𝑛 = ∫
𝑥𝑛

√𝑎𝑥 + 𝑏
𝑑𝑥 → 𝐼𝑛 =

2𝑥𝑛√𝑎𝑥 + 𝑏

𝑎(2𝑛 + 1)
−

2𝑛𝑏

𝑎(2𝑛 + 1)
𝐼𝑛−1

𝐼𝑛,𝑚 = ∫
𝑑𝑥

𝑥𝑚(𝑥2 + 𝑎2)𝑛
→ 𝐼𝑛,𝑚 = 𝑎

−1(𝐼𝑚,𝑛−1 − 𝐼𝑚−2,𝑛)

 

 

𝐼𝑛 = ∫sec
𝑛 𝜃 𝑑𝜃 = ∫sec2 𝜃 sec𝑛−2 𝜃 = tan 𝜃 sec𝑛−2 𝜃 − (𝑛 − 2)∫(sec𝑛 𝜃 − sec𝑛−2 𝜃)𝑑𝜃 → 

(𝑛 − 1)𝐼𝑛 = tan𝜃 sec
𝑛−2 𝜃 + (𝑛 − 2)𝐼𝑛−2 

 

∫sec3 𝜃 𝑑𝜃 =
1

2
tan 𝜃 sec 𝜃 +

1

2
∫sec 𝜃 𝑑𝜃 

∫sec 𝜃 𝑑𝜃 = ∫
𝑑𝜃

cos 𝜃
= ∫

cos 𝜃 𝑑𝜃

1 − sin2 𝜃
{
𝑢 = sin 𝜃
𝑑𝑢 = cos 𝜃 𝑑𝜃

} = ∫
𝑑𝑢

1 − 𝑢2
=
1

2
∫(

1

1 + 𝑢
−

1

1 − 𝑢
)𝑑𝑢 = 

The last part was obtained by partial fraction decomposition which is used when integrating 

rational functions. 

If 𝑓 and 𝑔 are non-zero polynomials over a field 𝐾 with 𝑔 = ∏ 𝑃𝑖
𝑛𝑖𝑛

𝑖=1  written as a product of 

distinct irreducible polynomials. (For 𝐾 = ℝ this means 𝑃𝑖  is a polynomial of degree 1 or 2.) 

              
𝑓

𝑔
= ∑ ∑

𝑎𝑖𝑗

𝑃𝑖
𝑗

𝑛𝑖

𝑗 = 𝑖

𝑘

𝑖 = 1

   
With unique polynomials 𝑏 and 𝑎𝑖𝑗 deg 𝑎𝑖𝑗 < deg 𝑃𝑖
If deg 𝑓 < deg𝑔  then 𝑏 = 0

 

 

∫sec 𝜃 𝑑𝜃 =
1

2
ln |
1 + 𝑢

1 − 𝑢
| =

1

2
ln |
1 + sin 𝜃

1 − sin 𝜃
| =

1

2
ln |
(1 + sin 𝜃)2

1 − sin2 𝜃
| = ln|sec 𝜃 + tan𝜃| 

 

∫ √𝑥2 − 1𝑑𝑥
�̃�

1

=
1

2
tan �̃� sec �̃� −

1

2
ln|sec �̃� + tan �̃�| =

�̃�

2
√�̃�2 − 1⏟    

�̃�

−
1

2
ln |�̃� +√�̃�2 − 1| 

𝐴 = �̃��̃� − 2∫ √𝑥2 − 1𝑑𝑥
�̃�

1

= ln|�̃� + �̃�| = ln|cosh𝐴 + sinh𝐴| → ( See first solution ) 

 

 
cosh 𝑥 =

𝑒𝑥+𝑒−𝑥

2
arcosh 𝑥 = ln(𝑥 + √𝑥2 − 1)

sinh𝑥 =
𝑒𝑥−𝑒−𝑥

2
arsinh 𝑥 = ln(𝑥 + √𝑥2 + 1)

 

 

 

 

sec 𝜃 = 1/ cos 𝜃 

tan2 𝜃 = sec2 𝜃 − 1 

𝐷(sec 𝜃) = tan𝜃 sec 𝜃 

𝐷(tan 𝜃) = sec2 𝜃 
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3.35 Derive the Taylor series expansions of ln(x + 1), arctan x and artanh x around x = 0 

 and show that ln 2 = 1 −
1

2
+
1

3
−
1

4
+⋯ and  

π

4
= 1 −

1

3
+
1

5
−
1

7
+⋯. 

 

𝑓(𝑥) = ln(𝑥 + 1)   𝑓 ∈ C∞((−1,∞),ℝ)  

D(ln(𝑥 + 1)) = (𝑥 + 1)−1     

D𝑛(ln(𝑥 + 1)) = (−1)𝑛−1(𝑛 − 1)! (𝑥 + 1)−𝑛  𝑛 ≥ 1  

 

Taylor’s theorem 

𝑓(𝑥) = ∑
𝑓(𝑘)(0)

𝑘!
𝑥𝑘

𝑛−1

𝑘=0

+ 𝑅𝑛(𝑥)   →  ln(𝑥 + 1) = ∑(−1)𝑘−1
𝑥𝑘

𝑘

𝑛−1

𝑘=1

+ 𝑅𝑛(𝑥) 

𝑅𝑛(𝑥) = ∫
(𝑥 − 𝑡)𝑛−1

(𝑛 − 1)!
𝑓𝑛(𝑡)𝑑𝑡

𝑥

0

=
𝑓(𝑛)(𝜉)

𝑛!
𝑥𝑛 =

(−1)𝑛−1

𝑛(𝜉 + 1)𝑛
𝑥𝑛  (𝜉 ∈ [0, 𝑥]) 

Case 1: 0 ≤ 𝑥 ≤ 1 

 𝜉 + 1 ≥ 1 ⇒ |𝑅𝑛(𝑥)| ≤
𝑥𝑛

𝑛
≤
1

𝑛
⇒ lim

𝑛→∞
𝑅𝑛(𝑥) = 0 

Case 2: −1 < x < 0 

|𝑅𝑛(𝑥)| = ∫
(𝑡 − 𝑥)𝑛−1

(𝑡 + 1)𝑛
𝑑𝑡

0

𝑥

= ∫(
𝑡 − 𝑥

𝑡 + 1
)
𝑛−1

⋅
1

𝑡 + 1
𝑑𝑡

0

𝑥

≤ |𝑥|𝑛−1∫
𝑑𝑡

𝑥 + 1

0

𝑥

≤
|𝑥|𝑛

𝑥 + 1
→ 0 as 𝑛 → ∞ 

𝑔(𝑡) =
𝑡 − 𝑥

𝑡 + 1
= 1 −

1 + 𝑥

𝑡 + 1
 increases with 𝑡 ⇒

𝑡 − 𝑥

𝑡 + 1
≤ −𝑥 = |𝑥| 

ln(𝑥 + 1) = 𝑥 −
𝑥2

2
+
𝑥3

3
−
𝑥4

4
+⋯   for   𝑥 ∈ (−1,1]

ln 2 = 1 −
1

2
+
1

3
−
1

4
+⋯

 

 

𝑓(𝑥) = arctan 𝑥   𝑓 ∈ C∞(ℝ,ℝ) 

arctan 𝑥 = ∫
𝑑𝑡

1 + 𝑡2

𝑥

0

= 

 

 

 

∫1 − 𝑡2 + 𝑡4 −⋯+ (−1)𝑛−1𝑡2𝑛−2 + (−1)𝑛
𝑡2𝑛

1 + 𝑡2
𝑑𝑡

𝑥

0

= 𝑥 −
𝑥3

3
+
𝑥5

5
−⋯+ (−1)𝑛−1

𝑥2𝑛−1

2𝑛 − 1
+ 𝑟𝑛 

|𝑟𝑛| = ∫
𝑡2𝑛

1 + 𝑡2
𝑑𝑡

𝑥

0

≤ ∫𝑡2𝑛𝑑𝑡

𝑥

0

=
𝑥2𝑛+1

2𝑛 + 1
→ 0 as 𝑛 → ∞ for 𝑥 ∈ [−1,1]  

arctan 𝑥 =  𝑥 −
𝑥3

3
+
𝑥5

5
−
𝑥7

7
+⋯ for 𝑥 ∈ [−1,1]  

𝜋

4
= arctan 1 = 1 −

1

3
+
1

5
−
1

7
+⋯

𝑦 = arctan 𝑥 𝑥 = tan𝑦 =
sin 𝑦

cos 𝑦
𝐷 (
𝑓

𝑔
) =

𝑓′𝑔 − 𝑓𝑔′

𝑔2
 

𝑑𝑦

𝑑𝑥
=

1

𝑑𝑥/𝑑𝑦
= cos2 𝑦 =

cos2 𝑦

cos2 𝑦 + sin2 𝑦
=

1

1 + tan2 𝑦
=

1

1 + 𝑥2
 

 

 

∑𝑥𝑘
𝑛−1

𝑘=0

=
1 − 𝑥𝑛

1 − 𝑥
(
𝑥 ≠ 1
𝑥 = −𝑡2

𝑡 ∈ ℝ
) →

1

1 + 𝑡2
= ∑(−1)𝑘𝑡2𝑘
𝑛−1

𝑘=0

+ (−1)𝑛
𝑡2𝑛

1 + 𝑡2
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𝑦 = artanh 𝑥 𝑥 = tanh 𝑦 =
sinh𝑦

cosh𝑦

cosh2 𝑥 − sinh2 𝑥 = 1
D(sinh𝑥) = cosh𝑥
D(cosh𝑥) = sinh𝑥

 

𝑑𝑦

𝑑𝑥
=

1

𝑑𝑥/𝑑𝑦
=

cosh2 𝑦

cosh2 𝑦 − sinh2 𝑦
=

1

1 − tanh2 𝑦
=

1

1 − 𝑥2
 

A Taylor series is uniquely determined by 𝑓 with 𝑥𝑘-coefficient 𝑓𝑘(0)/𝑘!. 

𝑓(𝑥) = arctan 𝑥 → 𝑓(2𝑘)(0) = 0 and 𝑓(2𝑘+1)(0) = (−1)𝑘(2k)! 

 

𝑓(𝑥) = artanh 𝑥   𝑓 ∈ C∞((−1,1),ℝ) 

artanh 𝑥 = ∫
𝑑𝑡

1 − 𝑡2

𝑥

0

= 

 

 

 

 

∫1 + 𝑡2 + 𝑡4 +⋯+ 𝑡2𝑛−2 +
𝑡2𝑛

1 − 𝑡2
𝑑𝑡

𝑥

0

= 𝑥 +
𝑥3

3
+⋯+

𝑥2𝑛−1

2𝑛 − 1
+ 𝑟𝑛 

|𝑟𝑛| = ∫
𝑡2𝑛

1 − 𝑡2
𝑑𝑡

𝑥

0

≤ 𝑥2𝑛∫
𝑑𝑡

1 − 𝑡2

𝑥

0

= 𝑥2𝑛 artanh 𝑥 → 0 as 𝑛 → ∞ , |𝑥| < 1 

artanh 𝑥 =  𝑥 +
𝑥3

3
+
𝑥5

5
+
𝑥7

7
+⋯ for 𝑥 ∈ (−1,1) 

 

artanh(𝑖𝑥) = 𝑖 (𝑥 −
𝑥3

3
+
𝑥5

5
−
𝑥7

7
) = 𝑖 arctan 𝑥   

A consequence of trigonometric functions being based upon 𝑥2 + 𝑦2 = 1 

whereas hyperbolic functions are based upon  𝑥2 − 𝑦2 = 𝑥2 + (𝑖𝑦)2 = 1 

The Taylor expansions of ln(𝑥 + 1) , arctan 𝑥 and artanh 𝑥 are of little 

computational value since they have a slow and limited area of convergence. 

 

A direct calculation of higher derivatives of arctan 𝑥 can be done inductively. 

D𝑛(arctan𝑥) = (−1)𝑛−1(𝑛 − 1)! sin𝑛 𝜃 sin 𝑛𝜃  with sin 𝜃 = 1/√1 + 𝑥2 

This leads to an alternative Taylor formula: 

𝜋

2
− 𝜃 = ∑

1

𝑛
cos𝑛 𝜃 sin 𝑛𝜃

∞

𝑛=1

→ 𝜋 =∑
(−1)𝑛

4𝑛

∞

𝑛=0

(
2

4𝑛 + 1
+

2

4𝑛 + 2
+

1

4𝑛 + 3
) 

Another formula of this type was discovered in 1995 by Bailey-Borwein-Plouffe 

𝜋 = ∑
1

16𝑛

∞

𝑛=0

(
2

8𝑛 + 1
−

2

8𝑛 + 4
−

1

8𝑛 + 5
−

1

8𝑛 + 6
) 

This formula has fast convergence and it can be used for calculating the 𝑛-th digit of 𝜋 

in a hexadecimal base without calculating preceding digits. 

This was a big surprise at the time. 

∑𝑥𝑘
𝑛−1

𝑘=0

=
1 − 𝑥𝑛

1 − 𝑥
(
𝑥 ≠ 1
𝑥 = 𝑡2

𝑡 ≠ 1
) →

1

1 − 𝑡2
= ∑𝑡2𝑘
𝑛−1

𝑘=0

+
𝑡2𝑛

1 − 𝑡2
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3.36 Calculate 𝑓𝜔(3) and show that 𝑓𝜔2(𝑛) > 𝑛 → ⋯ → 𝑛   ( 𝑛 𝑛’s) 

 𝑓𝛼 comes from the fast-growing hierarchy. 

  𝑓0(𝑛) = 𝑛 + 1 

  𝑓𝛼+1(𝑛) = 𝑓𝛼
𝑛(𝑛) 

  𝑓𝛼(𝑛) = 𝑓𝛼𝑛(𝑛) when 𝛼 = lim
𝑛
𝛼𝑛 is a limit ordinal. 

 

𝑓0(𝑛) = 𝑛 + 1 

𝑓1(𝑛) = 𝑓0
𝑛(𝑛) = 𝑛 + 𝑛 = 2𝑛 

𝑓2(𝑛) = 𝑓1
𝑛(𝑛) = 𝑛2𝑛 

 

𝑓𝜔(3) = 𝑓3(3) = 𝑓2
3(3) = 3 ⋅ 23 ⋅ (3 ⋅ 23 ⋅ 23⋅2

3
) ⋅ (3 ⋅ 23 ⋅ (3 ⋅ 23 ⋅ 23⋅2

3
) ⋅ 23⋅2

3⋅23⋅2
3

) = 

33 ⋅ 23⋅3+2⋅3⋅2
3+3⋅23⋅23⋅2

3

= 2402653241 ⋅ 33 

 

𝑓0(𝑛) = 𝑛 + 1 

𝑓1(𝑛) = 𝑓0
𝑛(𝑛) = 𝑛 + 𝑛 = 2𝑛 

𝑓2(𝑛) = 𝑓1
𝑛(𝑛) = 2𝑛 ⋅ 𝑛 > 2𝑛+1 > 2𝑛 

𝑓3(𝑛) = 𝑓2
𝑛(𝑛) = 2 ↑ (2 ↑ ⋯ (2 ↑ 𝑛)… )  𝑛 2′𝑠 >  2 ↑↑ (𝑛 + 1) > 2 ↑↑ 𝑛 

⋮ 

𝑓𝑘(𝑛) > 2 ↑
𝑘−1 (𝑛 + 1)  (𝑛 > 2) 

𝑓𝜔(𝑛) = 𝑓𝑛(𝑛) > 2 ↑
𝑛−1 (𝑛 + 1) 

 

Show 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞    𝑝, 𝑞, 𝑟 ∈ ℤ+ 

 

𝑝 → 𝑞 → 1 = 𝑝 → 𝑞 = 𝑝𝑞 = 𝑝 ↑1 𝑞 

 

Assume 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞 

𝑝 → 𝑞 → (𝑟 + 1) = 𝑝 → (𝑝 → ⋯ → (𝑝 → (𝑝) → 𝑟) → ⋯ → 𝑟) → 𝑟)   𝑞 𝑝′𝑠 = 

  = 𝑝 ↑𝑟 (… (𝑝 ↑𝑟 (𝑝 ↑𝑟 𝑝))… )    𝑞  𝑝′𝑠 = 

  = 𝑝 ↑𝑟+1 𝑞 

∴ 𝑝 → 𝑞 → 𝑟 = 𝑝 ↑𝑟 𝑞      𝑝, 𝑞, 𝑟 ∈ ℤ+ 

 

Show 𝑋 → 𝑛 → 𝑘 ≡ 𝑔𝑋,𝑘(𝑛) ⟹ 𝑋 → 𝑛 → (𝑘 + 1) = 𝑔𝑋,𝑘
𝑛 (1)    𝑋 is a Conway chain, 𝑛, 𝑘 ∈ ℤ+. 

 

Example: 

𝑔𝑋,𝑘(1) = 𝑋 → 1 → 𝑘 = (𝑋)      (𝑋) means evaluate Conway chain. 

𝑔𝑋,𝑘(2) = 𝑋 → 2 → 𝑘 = 𝑋 → (𝑋) → 𝑘 = 𝑔𝑋,𝑘((𝑋)) = 𝑔𝑋,𝑘
2 (1) 

 

Let 𝑔𝑋,𝑘(𝑛) = 𝑋 → 𝑛 → 𝑘 

𝑋 → 𝑛 → (𝑘 + 1) = 

𝑋 → (𝑋 → (…(𝑋 → (𝑋) → 𝑘)⏟          
𝑔𝑋,𝑘
2 (1)

→ ⋯ → 𝑘))⏞                          

𝑔𝑋,𝑘
𝑛 (1)

    𝑛 𝑋′𝑠) 
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𝑓𝜔(𝑛) = 𝑓𝑛(𝑛) > 2 ↑
𝑛−1 (𝑛 + 1) = 2 → (𝑛 + 1)⏟        

𝑋

→ (𝑛 − 1)⏟    
�̃�

→ 1     (𝑛 > 2) 

𝑓𝜔(𝑛) > 𝑋 → �̃� → 1 ≡ 𝑔𝑋,1(�̃�) 𝑛 = �̃� + 1   ,   𝑔𝑋,1(𝑦) < 𝑓𝜔(1 + 𝑦) 

 

𝑋 → �̃� → 2 = 𝑔𝑋,1
�̃� (1) < 𝑔𝑋,1

𝑛−2(𝑓𝜔(2)) < 𝑔𝑋,1
𝑛−3(𝑓𝜔(1 + 𝑓𝜔(2))) < 𝑔𝑋,1

𝑛−3(𝑓𝜔
2(3)) < ⋯ < 𝑓𝜔

𝑛−1(𝑛) 

𝑋 → �̃� → 2 < 𝑓𝜔
𝑛−1(𝑛) < 𝑓𝜔

𝑛(𝑛) = 𝑓𝜔+1(𝑛) 

 

𝑓𝜔+1(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1) → 2  

 

Assume 𝑓𝜔+𝑘(𝑛) > 2 → (𝑛 + 1)⏟        
𝑋

→ (𝑛 − 1)⏟    
�̃�

→ 𝑘 + 1⏟  
�̃�

 ≡ 𝑔𝑋,�̃�(�̃�) 𝑔𝑋,�̃�(𝑦) < 𝑓𝜔+𝑘(𝑦 + 1) 

𝑋 → �̃� → (�̃� + 1) = 𝑔𝑋,�̃�
�̃� (1) < 𝑔𝑋,�̃�

𝑛−2(𝑓𝜔+𝑘(2)) < 𝑔𝑋,𝑘
𝑛−3(𝑓𝜔+𝑘(𝑓𝜔+𝑘(2) + 1) < 

< 𝑔𝑋,𝑘
𝑛−3(𝑓𝜔+𝑘

2 (3)) < ⋯ < 𝑓𝜔+𝑘
𝑛−1(𝑛) < 𝑓𝜔+𝑘

𝑛 (𝑛) = 𝑓𝜔+𝑘+1(𝑛) 

 

∴ 𝑓𝜔+𝑘(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1) → (𝑘 + 1)  

 

𝑓𝜔2(𝑛) = 𝑓𝜔+𝑛(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1)⏟              
𝑋

→ (𝑛 + 1)⏟    
�̃�

→ 1⏟
�̃�

 

Assume 𝑓𝜔2+𝑘(𝑛) > 𝑋 → �̃� → �̃� ≡ 𝑔𝑋,�̃�(�̃�) �̃� = 𝑛 + 1 , �̃� = 𝑘 + 1 , 𝑔𝑋,�̃�(𝑦) < 𝑓𝜔2+𝑘(𝑦 − 1) 

𝑋 → �̃� → (�̃� + 1) = 𝑔𝑋,�̃�
�̃� (1) < 𝑔𝑋,�̃�

�̃�−1(𝑓𝜔2+𝑘(0)) < 𝑔𝑋,�̃�
�̃�−1(𝑓𝜔2+𝑘(1)) < 𝑔𝑋,�̃�

�̃�−2(𝑓𝜔2+𝑘(𝑓𝜔2+𝑘(1) − 1))) < 

𝑔𝑋,�̃�
�̃�−2(𝑓𝜔2+𝑘

2 (1)) < ⋯ < 𝑓𝜔2+𝑘
�̃� (1) < 𝑓𝜔2+𝑘

𝑛+1 (𝑛 + 1) = 𝑓𝜔2+𝑘+1(𝑛). 

 

∴ 𝑓𝜔2+𝑘(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1) → (𝑛 + 1) → (𝑘 + 1) 

 

𝑓𝜔3(𝑛) = 𝑓𝜔2+𝑛(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1) → (𝑛 + 1) → (𝑛 + 1) 

 

⋮ 

 

𝑓𝜔𝑘(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1) → (𝑛 + 1) → (𝑛 + 1) → ⋯ → (𝑛 + 1)     (𝑘 + 1) 𝑛′𝑠 

 

𝑓𝜔2(𝑛) = 𝑓𝜔𝑛(𝑛) > 2 → (𝑛 + 1) → (𝑛 − 1) → (𝑛 + 1) → (𝑛 + 1) → ⋯ → (𝑛 + 1)     (𝑛 + 1) 𝑛′𝑠 

 

𝑓𝜔2(𝑛) > 𝑛 →
(𝑛+1) 𝑛 
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3.37 A real or complex series ∑ 𝑎𝑘
∞
𝑘=0  is said to be absolutely convergent 

 if 𝑆𝑛 = ∑ |𝑎𝑘|
n
𝑘=0  is limited ( ∑ |𝑎𝑘|

∞
𝑘=0 = sup{𝑆𝑛|𝑛 ∈ ℕ0} = 𝑆 ). 

 A series ∑ 𝑏𝑘
∞
𝑘=0  that is convergent ( lim

𝑛→∞
(∑ 𝑏𝑘

n
𝑘=0 ) ∈ ℂ) without 

 being absolutely convergent is conditionally convergent. Show that: 

 

 I. Absolute convergence ⟹ convergence. 

 II. The sum of absolutely convergent series is independent of the ordering order of the terms. 

 III. The sum of a real conditionally convergent series can attain any real number with 

  an appropriate summation order. 

 

I. 

Let ∑𝑐𝑘 be an absolutely convergent series with 𝑐𝑘 = 𝑎𝑘 + 𝑖𝑏𝑘, ( 𝑎𝑘, 𝑏𝑘  ∈  ℝ , 𝑆𝑛 = ∑ 𝑐𝑘
𝑛
𝑘=0  ). 

∑|𝑐𝑘|

∞

𝑘=0

< ∞ ⇒ lim
𝑛→∞

∑|𝑐𝑘|

∞

𝑘=𝑛

= 0⇒ lim
𝑛→∞

∑|𝑎𝑘|

∞

𝑘=𝑛

= 0 ∧ lim
𝑛→∞

∑|𝑏𝑘|

∞

𝑘=𝑛

= 0     (
0 ≤ |𝑎𝑘| ≤ |𝑐𝑘|

0 ≤ |𝑏𝑘| ≤ |𝑐𝑘|
)  

The partial sum of the real parts 𝐴𝑛 = ∑ 𝑎𝑘
𝑛
𝑘=0  is a Cauchy sequence:  

0 ≤ |𝐴𝑚 − 𝐴𝑛| ≤ | ∑ 𝑎𝑘

𝑚

𝑘=𝑛+1

| ≤ ( ∑ |𝑎𝑘|

𝑚

𝑘=𝑛+1

) → 0 𝑎𝑠 𝑚, 𝑛 → ∞   (Assume 𝑚 ≥ 𝑛) 

The same goes for partial sums of imaginary parts 𝐵𝑛 = ∑ 𝑏𝑛
𝑘=0 𝑘

 and 𝑚 < 𝑛. 

A complete matric space 𝑀 is called complete if every Cauchy sequence of points in 𝑀 has a limit in 𝑀. 

The real numbers can be constructed as equivalence classes of Cauchy sequences in ℚ which makes 

ℝ a complete space by construction. 

lim
𝑛→∞

𝐴𝑛 = 𝐴 ∈ ℝ

lim
𝑛→∞

𝐵𝑛 = 𝐵 ∈ ℝ
   𝑆 = 𝐴 + 𝑖𝐵 ⇒ 0 ≤ |𝑆 − 𝑆𝑛| ≤ |𝐴 − 𝐴𝑛| + |𝐵 − 𝐵𝑛| → 0 as 𝑛 → ∞ 

 

lim
𝑛→∞

𝑆𝑛 = 𝑆 ∈ ℂ means that ∑ 𝑐𝑘
∞
𝑘=0  is a convergent series. 

 

II. 

Let ∑ 𝑎𝑘
∞
𝑘=0  be an absolutely convergent series with limit 𝑆 and 𝜎:ℕ0 → ℕ0 a bijection 

that rearranges terms to a new series with 𝑏𝑘 = 𝑎𝜎(𝑘). 

For any given 𝜀 > 0∃𝑁: 𝑛 ≥ 𝑁 ⇒ {
|𝑆 − ∑ 𝑎𝑘

𝑛
𝑘=0 | < 𝜀/2

∑ |𝑎𝑘| < 𝜀/2𝑘≥𝑛
 

 
𝑎0 𝑎1 𝑎2 . . . 𝑎𝑁 . . . .
𝑏0 𝑏1 𝑏2 . . . . . 𝑏𝑀 . . 

 

Choose 𝑀 s.t. 𝑏0, 𝑏1, … , 𝑏𝑀 contains 𝑎0, 𝑎1, … , 𝑎𝑁     {𝜎(1), 𝜎(2), … , 𝜎(𝑁)} ⊆ {1,2, … ,𝑀} 

𝑚 ≥ 𝑀 ⇒ |𝑆 −∑𝑏𝑘

𝑚

𝑘=0

| = |𝑆 −∑𝑎𝑘

𝑁

𝑘=0

| + || ∑ 𝑏𝑘
𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑢𝑡𝑠𝑖𝑑𝑒
{𝑎0,𝑎1,…,𝑎𝑁}

|| ≤ |𝑆 −∑𝑎𝑘

𝑁

𝑘=0

| + ∑ |𝑎𝑘| <

∞

𝑘=𝑁+1

𝜀/2 + 𝜀/2 = 𝜀 

∴ ∑ 𝑏𝑘
∞
𝑘=0 = 𝑆  
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III. 

Assume for simplicity that index starts at 1 and that there are only non-zero terms. 

 ∑ |𝑎𝑘|
∞
𝑘=1 = ∞ and |∑ 𝑎𝑘

∞
𝑘=1 | < ∞ with 𝑎𝑘 ∈ ℝ. 

Show ∀𝑆 ∈ ℝ∃𝜎:ℕ1 → ℕ1 (𝜎 bijective i. e. a permutation) s. t.∑𝑎𝜎(𝑘)

∞

𝑘=1

= 𝑆 

Rearrange terms and you can get any sum you want. 

 

Divide the series into two, one with negative terms replaced by zero 𝑎𝑘
+ = max (𝑎𝑘, 0) 

and one with positive terms replaced by zero 𝑎𝑘
− = min(𝑎𝑘, 0) 

 

∑ |𝑎𝑘|
∞
𝑘=1  infinite and ∑ 𝑎𝑘

∞
𝑘=1  finite ⟹ ∑ 𝑎𝑘

+∞
𝑘=1 = ∞ and ∑ 𝑎𝑘

−∞
𝑘=1 = −∞ 

 

Choose a sum 𝑆 to attain 

Pick non-zero terms from 𝑎𝑘
+ in order starting at first available term until the sum exceeds 𝑆. 

∑ 𝑎𝜎(𝑘)

𝑚1−1

𝑘=1

≤ 𝑆 <∑𝑎𝜎(𝑘)

𝑚1

𝑘=1

 

Pick non-zero terms from 𝑎𝑘
− in order starting at first available term until the sum is less than 𝑆. 

∑𝑎𝜎(𝑘)

𝑚1

𝑘=1

+∑𝑎𝜎(𝑚1+𝑘)

𝑚2

𝑘=1

< 𝑆 ≤∑𝑎𝜎(𝑘)

𝑚1

𝑘=1

+ ∑ 𝑎𝜎(𝑚1+𝑘)

𝑚2−1

𝑘=1

 

The process can be repeated indefinitely to get 𝜎(𝑘) for every 𝑘 ∈ ℕ1.  

 

 

 

 

 

 

 

 

 

 

The deviation of the partial sum from 𝑆 in between changes of direction is limited by the deviation at the 

preceding change of direction and the deviation at change 𝑛, |𝛿𝑛| has an upper limit: 

|𝛿𝑛| = |𝑆 − ∑ 𝑏𝑘

𝑚1+⋯+𝑚𝑛 

𝑘=1

| < |𝑎𝜎(𝑚1+⋯+𝑚𝑛)| 

 |∑𝑎𝑘

∞

𝑘=1

| < ∞ ⇒ |𝑎𝑘| → 0 as 𝑘 → ∞  ⇒   |𝑎𝜎(𝑚1+⋯+𝑚𝑛)| → 0 as 𝑛 → ∞ since 

𝜎(𝑚1 +𝑚2 +⋯+𝑚𝑛) → ∞ as n → ∞ by the sequential picking method 

∴  lim
𝑛→∞

|𝛿𝑛| = 0  and therefore lim
𝑛→∞

∑𝑎𝜎(𝑘)

𝑛

𝑘=1

= 𝑆 

𝑆 

𝑎𝜎(1) = 𝑏1 

𝑎𝜎(2) = 𝑏2  = Partial sums 𝑏1 + 𝑏2 +⋯𝑏𝑛 of rearranged series 

𝑎𝜎(𝑚1) = 𝑏𝑚1
 𝑎𝜎(𝑚1+𝑚2) = 𝑏𝑚1+𝑚2

 

𝑎𝜎(𝑚1+1) = 𝑏𝑚1+1 

⋱ 

𝑎𝜎(𝑚1+𝑚2+⋯+𝑚𝑛) 

𝑎𝜎(𝑚1+𝑚2+⋯+𝑚𝑛+𝑚𝑛+1) 
… 

|𝛿1| 

|𝛿2| |𝛿𝑛| 

|𝛿𝑛+1| 
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3.38 Show that every solution to ℒ(𝑦) = 𝑦(𝑛) + 𝑎𝑛−1𝑦
𝑛−1 +⋯+ 𝑎0𝑦 = 0 

 with characteristic polynomial 𝑙(𝑟) = ∏ (𝑟 − 𝑟𝑘)
𝑛𝑘𝜈

𝑘=1  is of the form 

 𝑦(𝑥) = ∑ 𝑃𝑘(𝑥)𝑒
𝑟𝑘𝑥𝜈

𝑘=1  with deg 𝑃𝑘 < 𝑛𝑘. 

 

Proof by induction over the degree of 𝑙(𝑟). 

 

deg 𝑙(𝑟) = 1  

𝑦′ + 𝑎0𝑦 = 0 ⇒ 𝐷(𝑒𝑎0𝑥y) = 0 ⇒ 𝑦 = 𝐶𝑒−𝑎0𝑥 which is of the form 𝑃1(𝑥)𝑒
𝑟1𝑥  with deg𝑃1 < 1 

𝑙(𝑟) = 𝑟 + 𝑎0 ⇒ 𝑟1 = −𝑎0 

 

Assume statement is true ℒ(𝑦) = 0 with deg 𝑙(𝑟) = 𝑘 − 1. 

 

deg 𝑙(𝑟) = 𝑘 

Let 𝑟1 be a root of 𝑙(𝑟), 𝑙(𝑟) = 𝑙1(𝑟)(𝑟 − 𝑟1) with deg 𝑙1(𝑟) = 𝑘 − 1. 

 

Let 𝑧 = 𝑦′ − 𝑟1𝑦 

 

𝑙(𝐷)𝑦 = 0 ⇒ 𝑙1(𝐷)(𝐷 − 𝑟1)𝑦 = 0 ⇒ 𝑙1(𝐷)𝑧 = 0 ⇒ by induction assumption 

𝑧(𝑥) = ∑ 𝑄𝑘(𝑥)
𝜈
𝑘=1 𝑒𝑟𝑘𝑥  with deg𝑄𝑘 < 𝑛𝑘  and deg𝑄1 < 𝑛1 − 1 

( If 𝑛1 = 1, 𝑟1 is a simple root and there will be no term with 𝑘 = 1. ) 

 

𝑦′ − 𝑟1𝑦 =∑ 𝑄𝑘(𝑥)
𝜈

𝑘=1
𝑒𝑟𝑘𝑥 ⇒ 𝐷(𝑒−𝑟1𝑥𝑦) = 𝑒−𝑟1𝑥∑ 𝑄𝑘(𝑥)

𝜈

𝑘=1
𝑒𝑟𝑘𝑥 ⇒ 

 

𝑦(𝑥) = 𝑒𝑟1𝑥 (∑ (∫ 𝑄𝑘(𝑡)𝑒
(𝑟𝑘−𝑟1)𝑡𝑑𝑡

𝑥

0

) + 𝐶
𝜈

𝑘=1
) 

 

𝑘 = 1: 𝑒𝑟1𝑥 (∫ 𝑄1(𝑡)𝑑𝑡
𝑥

0

+ 𝐶1) = 𝑃1(𝑥)𝑒
𝑟1𝑥  with deg 𝑃1 = 1 + deg𝑄1 < 𝑛1 

𝑘 > 1: 𝑒𝑟1𝑥 (∫ 𝑄𝑘(𝑡)𝑒
(𝑟𝑘−𝑟1)𝑡𝑑𝑡

𝑥

0

+ 𝐶) =

after repeated
integration
by parts

= 𝑃𝑘(𝑥)𝑒
𝑟𝑘𝑥  with deg 𝑃𝑘 < 𝑛𝑘 

 

∴ Statement true for 𝑛 = 𝑘 and by induction true for ℒ(𝑦) = 0 of every degree.
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3.39 Homogeneous linear recurrence relation with constant coefficients of order 𝑛: 

  𝑎𝑘 = 𝑐1𝑎𝑘−1 + 𝑐2𝑎𝑘−2 +⋯+ 𝑐𝑛𝑎𝑘−𝑛 (∗)    𝑎𝑖, 𝑐𝑖, 𝑟𝑖 ∈ ℂ 

 with characteristic polynomial 𝑝(𝑡) = 𝑡𝑛 − ∑ 𝑐𝑖𝑡
𝑛−𝑖 = ∏ (𝑡 − 𝑟𝑗)

𝑛𝑗𝜈
𝑗=1

𝑛
𝑖=1 , 𝑛1 +⋯+ 𝑛𝜈 = 𝑛 

 Show that 𝑎𝑘 = ∑ 𝑃𝑗(𝑘)𝑟𝑗
𝑘𝜈

𝑗=1  with polynomials 𝑃𝑗 of degree less than 𝑛𝑗  solves (∗). 

 

With sequence 〈𝑎𝑘〉 ≡ 〈𝑎0, 𝑎1, 𝑎2, … 〉 and linear operator ℒ〈𝑎𝑘〉 = 〈𝑎𝑘 − ∑ 𝑐𝑖𝑎𝑘−𝑖
𝑛
𝑖=1 〉 

it is enough to show that the sequence 〈𝑎𝑘〉 = 〈𝑃𝑗(𝑘)𝑟𝑗
𝑘〉 with deg𝑃𝑗 < 𝑛𝑗  solves ℒ〈𝑎𝑘〉 = 0. 

 

 

 

 

 

 

 

Show 𝑎𝑘 − ∑ 𝑐𝑖𝑎𝑘−𝑖
𝑛
𝑖=1 = 0 for every 𝑘 > 𝑛 

𝐸𝑘𝑎0 −∑ 𝑐𝑖𝐸
𝑘−𝑖𝑎0

𝑛
𝑖=1 = ∏ (𝐸 − 𝑟𝑗)

𝑛𝑗
𝐸𝑘−𝑛𝑎0

𝜈
𝑗=1 = ∏ (𝐸 − 𝑟𝑗)

𝑛𝑗
𝑎𝑘−𝑛

𝜈
𝑗=1   

Let 𝑎𝑘 = 𝑃(𝑘)𝑟𝑗
𝑘 with a polynomial 𝑃 of  deg𝑃 < 𝑛𝑗  

(𝐸 − 𝑟𝑗)
𝑛𝑗
𝑃(𝑚)𝑟𝑗

𝑚 = ∑ (
𝑛𝑗
𝑖
) 𝐸𝑖(−𝑟𝑗)

𝑛𝑗−𝑖𝑛𝑗
𝑖=0

𝑃(𝑚)𝑟𝑗
𝑚 = ∑ (

𝑛𝑗
𝑖
) (−𝑟𝑗)

𝑛𝑗−𝑖
𝑃(𝑚 + 𝑖)𝑟𝑗

𝑚+𝑖𝑛𝑗
𝑖=0

= 

(−1)𝑛𝑗𝑟
𝑗

𝑛𝑗+𝑚∑(
𝑛𝑗
𝑖
) (−1)𝑖

𝑛𝑗

𝑖=0

𝑃(𝑚 + 𝑖) [
𝑄(𝑛𝑗 − 𝑖) ≡ 𝑃(𝑚 + 𝑖)

𝑄 is a polynomial
deg 𝑄 = deg 𝑃

] = 𝑐 ⋅∑(
𝑛𝑗
𝑖
) (−1)𝑖

𝑛𝑗

𝑖=0

𝐸𝑛𝑗−𝑖𝑄(0) = 

𝑐 ⋅ ∆𝑛𝑗𝑄(0) = 0 since deg 𝑄 = deg𝑃 < 𝑛𝑗 

 

∴ 𝑎𝑘 − ∑ 𝑐𝑖𝑎𝑘−𝑖
𝑛
𝑖=1 = 0 for every 𝑘 > 𝑛 when 𝑎𝑘 is of the form ∑ 𝑃𝑗(𝑘)𝑟𝑗

𝑘𝜈
𝑗=1  with deg𝑃𝑗 < 𝑛𝑗 . 

  

Forward shift operator  𝐸〈𝑥𝑘〉 ≡ 〈𝑥𝑘+1〉 

Forward difference operator ∆≡ 𝐸 − 𝐼 

 ∆〈𝑥𝑘〉 = 〈𝑥𝑘+1 − 𝑥𝑘〉 

Forward difference operator ∆ℎ[𝑓](𝑥) ≡ 𝑓(𝑥 + ℎ) − 𝑓(𝑥) 

acting on a function 𝑓 ∆[𝑓](𝑥) ≡ 𝑓(𝑥 + 1) − 𝑓(𝑥) 

For polynomial 𝑃 of deg 𝑃=𝑛 ∆ℎ
𝑘[𝑃](𝑥) = 0 if 𝑘 > 𝑛 

 deg(∆ℎ
𝑘[𝑃]) = 𝑛 − 𝑘 (Proved by induction) 

Discretized versions of PDEs corresponds to multidiensional recurrence relations. 

An example of such a relation is Pascal’s triangle 

(
𝑛
𝑘
) = (

𝑛 − 1
𝑘 − 1

) + (
𝑛 − 1
𝑘
) 

with boundary condition (
𝑛
0
) = (

𝑛
𝑛
) = 1. 

Linear homogeneous ODEs with constant coefficients are solved with ansatz 𝑓(𝑥) = 𝑒𝑟𝑥. 

The discretized version is solved with ansatz 𝑎𝑘 = 𝑟
𝑘, in both cases with 𝑟 a solution to a 

characteristic polynomial. A Taylor series for the solution to the ODE gives a connection. 

𝑓(𝑥) = ∑ 𝑐𝑘𝑥
𝑘∞

𝑘=0 , with 𝑐𝑘 = 𝑓
𝑘(0)/𝑘! 

The ODE leads to a recurrence relation for the coefficients 𝑐𝑘. 

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0 → 𝑎𝑓(𝑘)(0) + 𝑏𝑓(𝑘+1)(0) + 𝑐𝑓(𝑘+2)(0) = 0 

𝑥𝑘 = 𝑓
(𝑘)(0) → 𝑎𝑥𝑘 + 𝑏𝑥𝑘+1 + 𝑐𝑥𝑘+2 = 0 , 𝑓(𝑥) = 𝑒𝑟𝑥 → 𝑓(𝑘)(0) = 𝑟𝑘 
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𝑝 = −1 ∶ harmonic mean 

𝑝 = 0   ∶ geometric mean 

𝑝 = 1   ∶ arithmetic mean 

𝑝 = 2   ∶ square mean 

3.40 The weighted power mean 𝑀𝑝of 𝑥1, … , 𝑥𝑛 ∈ ℝ
+ 

 with weights 𝑤𝑖 ∈ ℝ
+ and ∑ 𝑤𝑖 = 1

𝑛
𝑖=1  is defined by 

𝑀𝑝(𝑥1, … , 𝑥𝑛) = (∑ 𝑤𝑖𝑥𝑖
𝑝𝑛

𝑖=1 )1 𝑝⁄     for 𝑝 ∈ ℝ ∖ {0} 

𝑀0(𝑥1, … , 𝑥𝑛) = ∏ 𝑥𝑖
𝑤𝑖𝑛

𝑖=1    

𝑀−∞(𝑥1, … , 𝑥𝑛) = min(𝑥1, … , 𝑥𝑛) 

𝑀∞(𝑥1, … , 𝑥𝑛) = max(𝑥1, … , 𝑥𝑛) 

 Show: 

 lim
𝑝→0

𝑀𝑝 = 𝑀0  

 lim
𝑝→−∞

𝑀𝑝 = 𝑀−∞  

 lim
𝑝→∞

𝑀𝑝 = 𝑀∞   

 𝑝 < 𝑞 ⟹ 𝑀𝑝(𝑥1, … , 𝑥𝑛) ≤ 𝑀𝑞(𝑥1, … , 𝑥𝑛)  with equality iff  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 

  ( min ≤ 𝐻.𝑀 ≤ 𝐺.𝑀 ≤ 𝐴.𝑀 ≤ 𝑆.𝑀 ≤ max ) 
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4.1 Prove 𝑝2|(2𝑝(𝑝−1) − 1) when 𝑝 is a prime. 

 

Fermat’s Little theorem gives 2𝑝−1 ≡ 1 (mod 𝑝), 2𝑝−1 = 𝑘𝑝 + 1 for some 𝑘 ∈ ℤ. 

 

2𝑝(𝑝−1) − 1 = (𝑘𝑝 + 1)𝑝 − 1 = 𝑝2(… ) by the binomial theorem 

 

∴ 𝑝2|2𝑝(𝑝−1) − 1 

 

This can illustrates the ABC conjecture about numbers (𝑎, 𝑏, 𝑐) such that 𝑎 + 𝑏 = 𝑐: 

 

 

 

 

 

The condition 𝜀 > 0 can not be relaxed, the number of triples with rad(𝑎𝑏𝑐) < 𝑐 is infinite, 

it’s even true that the number of triples with rad(𝑎𝑏𝑐) < 𝛼𝑐 is infinite for any 𝛼 > 0. 

 

The function rad(𝑛): ℤ+ → ℤ+is given by rad(∏𝑝𝑖
𝑛𝑖) = ∏𝑝𝑖 

 

𝑎 = 1  𝑏 = 2𝑝(𝑝−1)𝑛 − 1  𝑐 = 2𝑝(𝑝−1) with 𝑝 a prime and 𝑛 ∈ ℤ+ satisfies 𝑎 + 𝑏 = 𝑐. 

 

𝑏 = (2𝑝(𝑝−1))
𝑛
− 1𝑛 = (2𝑝(𝑝−1) − 1)(… ) = 𝑝2(… ) ⇒ 𝑏 = 𝑝2 ⋅

𝑏

𝑝2
    with  

𝑏

𝑝2
 an integer 

 

rad(𝑎𝑏𝑐) = 2rad(𝑏) = 2𝑝 ⋅ rad (
𝑏

𝑝2
) ≤ 2𝑝

𝑏

𝑝2
=
2𝑏

𝑝
<
2𝑐

𝑝
 

For any prime 𝑝 > 2/𝛼 and 𝑛 ∈ ℤ+:  rad(𝑎𝑏𝑐) < 𝛼𝑐 

For any 𝜀 > 0 there is only finitely many triples (𝑎, 𝑏, 𝑐) with positive, coprime integers s.t. 

rad(abc)1+𝜀 < 𝑐 
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4.2 Show that if a fraction 𝑎/𝑝 with 0 < 𝑎 < 𝑝 and 𝑝 a prime has a decimal expansion  

 with even period 𝑎/𝑝 = 0. 𝑟1…𝑟𝑛𝑟𝑛+1…𝑟2𝑛 then 𝑟𝑖 + 𝑟𝑖+𝑛 = 9 

 

 Example: 
1

17
= 0. 05882352⏟      

𝐴

94117647⏟      
𝐵

      
05882352
94117647

99999999

      𝐴 + 𝐵 = 10𝑛 − 1 

 

 
𝑎

𝑝
= 0. 𝑟1…𝑟2𝑛 ⟹

𝑎

𝑝
⋅ 102𝑛 = 𝑁 +

𝑎

𝑝
⟹ (102𝑛 − 1)

𝑎

𝑝
= 𝑁     ( 𝑁 = 𝑟1…𝑟2𝑛 = 𝐴 ⋅ 10

𝑛 + 𝐵 ) 

𝑎

𝑝
=

𝑁

102𝑛 − 1
 

𝑝|102𝑛 − 1 since 
(102𝑛−1)𝑎

𝑝
∈ ℤ and 0 < 𝑎 < 𝑝 

10𝑘 − 1 is not a multiple of 𝑝 for any 𝑘 < 2𝑛 since that would make the period of 𝑎/𝑝 less than 2𝑛. 

 

𝑎

𝑝
=

𝑁

(10𝑛 + 1)(10𝑛 − 1)
  (
102𝑛 − 1 is a multiple of 𝑝

10𝑛 − 1 is not a multiple of 𝑝
⟹ 10𝑛 + 1 is a multiple of 𝑝) 

 

𝑎(10𝑛 + 1)

𝑝
=

𝑁

10𝑛 − 1
∈ ℤ ⟹

𝑁  is a multiple of 10𝑛 − 1

𝑁 ≡ 0 (mod 10𝑛 − 1)
 

 

𝑁 = 𝐴 ⋅ 10𝑛 + 𝐵
10𝑛 ≡ 1 (mod 10𝑛 − 1)

⟹ 𝑁 ≡ 𝐴 + 𝐵 (mod 10𝑛 − 1) ⟹ 𝐴 + 𝐵 ≡ 0 (mod 10𝑛 − 1)

0 < 𝐴 < 10𝑛 − 1
0 < 𝐵 < 10𝑛 − 1

⟹ 0 < 𝐴 + 𝐵 < 2(10𝑛 − 1)
⟹ 𝐴 + 𝐵 = 10𝑛 − 1 
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4.3. There are infinitely many triples of positive integers (𝑎, 𝑏, 𝑐) with gcd(𝑎, 𝑏, 𝑐) = 1 s.t. 

 𝑎 + 𝑏 = 𝑐 and 𝑞(𝑎, 𝑏, 𝑐) > 1 where: 

 𝑞(𝑎, 𝑏, 𝑐) = log(𝑐) / log(rad(𝑎𝑏𝑐))   ,   rad(∏𝑝𝑖
𝑘𝑖) = ∏𝑝𝑖. 

 The abc-conjecture states: 𝜀 > 0 ⇒ only finitely many triples has 𝑞(𝑎, 𝑏, 𝑐) > 1 + 𝜀. 

 If the abc-conjecture is true then there is a maximal value of 𝑞(𝑎, 𝑏, 𝑐). 

 Assume the abc-conjecture and that 𝑞(𝑎, 𝑏, 𝑐) is always less than 2. 

 Show that Fermat’s last theorem 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 with gcd(𝑎, 𝑏, 𝑐) = 1 holds for 𝑛 ≥ 6. 

 ( The abc-conjecture says nothing about the limit of 𝑞(𝑎, 𝑏, 𝑐), biggest known case is 1.63. ) 

 

Use the assumption on a counter example of Fermat’s last theorem 𝑎𝑛⏟
𝐴

+ 𝑏𝑛⏟
𝐵

= 𝑐𝑛⏟
𝐶

 where 𝑛 ≥ 6. 

𝑎, 𝑏, 𝑐 are assumed co-prime. 

 

The quality 𝑞(𝐴, 𝐵, 𝐶) for the counter example gives 𝑞(𝐴, 𝐵, 𝐶) = log(𝑐𝑛) / log(rad(𝑎𝑛𝑏𝑛𝑐𝑛)) 

 

𝑞(𝐴, 𝐵, 𝐶) < 2  ⟹ log(𝑐𝑛) < 2 log(𝑟𝑎𝑑(𝑎𝑛𝑏𝑛𝑐𝑛)) ⟹ 

𝑐𝑛 < (rad(𝑎𝑛𝑏𝑛𝑐𝑛))
2
= rad(𝑎𝑏𝑐)2 ≤ (𝑎𝑏𝑐)2 < (𝑐3)2 = 𝑐6  ⟹ 

𝑛 < 6   is a contradiction 

 

∴ There can be no counterexample to FLT for 𝑛 ≥ 6 if we assume ABC and 𝑞(𝐴, 𝐵, 𝐶) < 2. 

 

  



3.6 Linear Algebra ## 

 

5.x Show that the inner angle between two adjoining planes in a regular dodecahedron 

 equals 𝜈 = 2arctan( 𝜑) where 𝜑 ≡
√5+1

2
 is the golden ratio. Solve it by using a matrix for rotation. 

 

    Rotate the pentagons A and C simultaneously until they meet, i.e. 

    rotate vector �̅� around unit vector �̅� until it points backwards i.e. 

    𝐑�̅� ∙ �̅�𝑥 = 0. 

    The rotation matrix R around �̅� = (u𝑥, u𝑦, u𝑧) with angle 𝜔 is: 

    (

u𝑥
2(1 − 𝑐) + 𝑐 𝑢𝑥𝑢𝑦(1 − 𝑐) − 𝑢𝑧𝑠 𝑢𝑧𝑢𝑥(1 − 𝑐) + 𝑢𝑦𝑠

𝑢𝑦𝑢𝑥(1 − 𝑐) + 𝑢𝑧𝑠 u𝑦
2(1 − 𝑐) + 𝑐 𝑢𝑦𝑢𝑧(1 − 𝑐) − 𝑢𝑥𝑠

𝑢𝑧𝑢𝑥(1 − 𝑐) − 𝑢𝑦𝑠 𝑢𝑧𝑢𝑦(1 − 𝑐) + 𝑢𝑥𝑠 u𝑧
2(1 − 𝑐) + 𝑐

) 

    where 𝑐 = 𝑐𝑜𝑠𝜔 and 𝑠 = 𝑠𝑖𝑛𝜔. Calculate angles in unit 𝜏 = 1 turn. 

    �̅� = (cosα, sinα, 0) and �̅� = (cos2α,−sin2α, 0) where 𝛼 = 𝜏/10 

 

    

𝐑�̅� ∙ �̅�𝑥 = 𝑐𝑜𝑠2𝛼[u𝑥
2(1 − 𝑐) + 𝑐] − 𝑠𝑖𝑛2𝛼[𝑢𝑥𝑢𝑦(1 − 𝑐)]

= 𝑐𝑜𝑠2𝛼[𝑐𝑢𝑦
2 + 𝑢𝑥

2] − 𝑠𝑖𝑛2𝛼[−𝑐𝑢𝑥𝑢𝑦 + 𝑢𝑥𝑢𝑦]

= 𝑐𝑜𝑠𝜔 ∙ 𝑠𝑖𝑛𝛼[𝑐𝑜𝑠2𝛼 ∙ 𝑠𝑖𝑛𝛼 + 𝑠𝑖𝑛2𝛼 ∙ 𝑐𝑜𝑠𝛼] +

𝑐𝑜𝑠𝛼⌈𝑐𝑜𝑠2𝛼 ∙ 𝑐𝑜𝑠𝛼 − 𝑠𝑖𝑛2𝛼 ∙ 𝑠𝑖𝑛𝛼⌉

 

 

 

              𝐑�̅� ∙ �̅�𝑥 = 0 ⇒ 𝑐𝑜𝑠𝜔 =
𝑐𝑜𝑠𝛼[𝑠𝑖𝑛2𝛼∙𝑠𝑖𝑛𝛼−𝑐𝑜𝑠2𝛼∙𝑐𝑜𝑠𝛼]

𝑠𝑖𝑛𝛼[𝑐𝑜𝑠2𝛼∙𝑠𝑖𝑛𝛼+𝑠𝑖𝑛2𝛼∙𝑐𝑜𝑠𝛼]
=
𝑐𝑜𝑠2𝛼(3𝑠𝑖𝑛2𝛼−𝑐𝑜𝑠2𝛼)

𝑠𝑖𝑛2𝛼(3𝑐𝑜𝑠2𝛼−𝑠𝑖𝑛2𝛼)
 

 

   Calculating 𝑠𝑖𝑛𝛼 for 𝛼 =
𝜏

10
: 

   𝑠𝑖𝑛5𝑥 = 𝐼𝑚[(𝑐𝑜𝑠𝑥 + 𝑖 ∙ 𝑠𝑖𝑛𝑥)5] = 16𝑠𝑖𝑛5𝑥 − 20𝑠𝑖𝑛3𝑥 + 5𝑠𝑖𝑛𝑥 

   𝑠𝑖𝑛
𝜏

10
= 𝑦 𝑔𝑒𝑟 0 = 16𝑦5 − 20𝑦3 + 5𝑦  

   16(𝑦2)2 − 20𝑦2 + 5 = 0 𝑔𝑒𝑟 𝑦2 =
5±√5

8
 

   𝑠𝑖𝑛2
𝜏

10
< 𝑠𝑖𝑛2

𝜏

8
=
1

2
 ⟹ 𝑦2 =

5−√5

8
  ⟹ 𝑠𝑖𝑛𝛼 = √

5−√5

8
⟹ 𝑐𝑜𝑠𝛼 =

1

4
(1 + √5)

   
𝑐𝑜𝑠2𝛼(3𝑠𝑖𝑛2𝛼 − 𝑐𝑜𝑠2𝛼) = 1 4⁄

𝑠𝑖𝑛2𝛼(3𝑐𝑜𝑠2𝛼 − 𝑠𝑖𝑛2𝛼) = √5 4⁄
  ⟹  𝑐𝑜𝑠𝜔 = 1 √5   ⟹⁄    𝜈 =

𝜏

2
− 𝑎𝑟𝑐𝑐𝑜𝑠

1

√5
 

 

Remains to show:   
𝜏

2
− 𝑎𝑟𝑐𝑐𝑜𝑠

1

√5
= 2𝑎𝑟𝑐𝑡𝑎𝑛𝜑    𝜑 =

√5+1

2
     

𝑐𝑜𝑠 (𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠
1

√5
) = −cos (𝑎𝑟𝑐𝑐𝑜𝑠

1

√5
) = −

1

√5
 

cos(2𝑎𝑟𝑐𝑡𝑎𝑛𝜑) = 𝑐𝑜𝑠2(𝑎𝑟𝑐𝑡𝑎𝑛𝜑) − 𝑠𝑖𝑛2(𝑎𝑟𝑐𝑡𝑎𝑛𝜑)

=
1

1 + 𝜑2
−

𝜑2

1 + 𝜑2

=
1 − (6 + 2√5) 4⁄

1 + (6 + 2√5) 4⁄

= −
1

√5

 

Conclusion: The inner angle between the planes in a regular dodecahedron is 2𝑎𝑟𝑐𝑡𝑎𝑛
√5+1

2
 ≈ 116,57° 

A 

B 

C 
x 

y 

�̅� 

�̅� 

𝑎 

𝑏 
𝑐 

𝑑 𝑎 =
𝜏

5
 

𝑏 =
𝜏/2 − 𝑎

2
=
3𝜏

20
 

𝑐 =
𝜏

4
− 𝑏 =

𝜏

10
 

𝑑 = 2𝑏 − 𝑐 =
2𝜏

10
 

𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 = 1
1

𝑡𝑎𝑛2𝑥
+ 1 =

1

1 − 𝑐𝑜𝑠2𝑥

𝑐𝑜𝑠𝑥 =
1

√1 + 𝑡𝑎𝑛2𝑥

 

𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 = 1

1 + 𝑡𝑎𝑛2𝑥 =
1

1 − 𝑠𝑖𝑛2𝑥

𝑠𝑖𝑛𝑥 =
𝑡𝑎𝑛𝑥

√1 + 𝑎𝑛2𝑥

 

�̅� 

�̅� 



## Mathematical Wanderings 

 

C.1 Show that the Liouville numbers 𝕃 are transcendental and that they 

 form an uncountable dense subset of ℝ with Lebesgue measure zero. 

 

          𝕃 = {𝑥 ∈ ℝ ∖ ℚ ׃ ∀𝑛 ∈ ℕ1 ∃(𝑝, 𝑞) ∈ ℤ × ℕ2 (|𝑥 −
𝑝

𝑞
| <

1

𝑞𝑛
)}     ℕ𝑘 = {𝑘, 𝑘 + 1,… } 

 

 

 

 

(I) Liouville numbers (𝕃) are transcendental 

 

Theorem 7 from appendix C (Liouville’s theorem) 

[ ∀𝐶 ∈ ℝ+ ∀𝑛 ∈ ℕ1 ∃(𝑝, 𝑞) ∈ ℤ × ℕ1  (0 < |𝑥 −
𝑝

𝑞
| ≤

𝐶

𝑞𝑛
) ] ⟹ 𝑥 ∈ ℝ ∖ 𝔸  

Show 

[  ∀𝑛 ∈ ℕ1 ∃(𝑝, 𝑞) ∈ ℤ × ℕ2  (0 < |𝑥 −
𝑝

𝑞
| ≤

1

𝑞𝑛
) ] ⟹ 𝑥 ∈ ℝ ∖ 𝔸  

Choose 𝑟 ∈ ℕ1 s. t.
1

2𝑟
≤ 𝐶 and let 𝑚 = 𝑟 + 𝑛 

𝑥 ∈ 𝕃  ⟹ ∃𝑝, 𝑞 > 1 s. t.   0 < |𝑥 −
𝑝

𝑞
| <

1

𝑞𝑚
=

1

𝑞𝑟+𝑛
≤

1

2𝑟𝑞𝑛
≤

𝐶

𝑞𝑛
   ⟹   𝑥 ∈ ℝ ∖ 𝔸  

 

(II) 𝕃 is an uncountable set 

 

If (𝑎1, 𝑎2, … ) is a sequence with 𝑎𝑘 ∈ {0,1, … , 𝑏 − 1}  (𝑏 ∈ ℕ2) and infinitely many 𝑎𝑘 ≠ 0 then 

𝑥 = ∑
𝑎𝑘
𝑏𝑘!

∞

𝑘=1

= (0. 𝑎1𝑎2000𝑎300000000000000000𝑎400… )𝑏 is not periodic, so it′s not rational. 

For 𝑛 ∈ ℕ1 choose 𝑞𝑛 = 𝑏
𝑛!  and 𝑝𝑛 = 𝑞𝑛 ∑

𝑎𝑘

𝑏𝑘!
𝑛
𝑘=1  then: 

0 < |𝑥 −
𝑝𝑛
𝑞𝑛
| = ∑

𝑎𝑘
𝑏𝑘!

∞

𝑘=𝑛+1

≤ ∑
𝑏 − 1

𝑏𝑘

∞

𝑘=(𝑛+1)!

=
𝑏 − 1

𝑏(𝑛+1)!
∑

1

𝑏𝑘

∞

𝑘=0

=
𝑏

𝑏(𝑛+1)!
≤

𝑏𝑛!

𝑏(𝑛+1)!
=

1

𝑏𝑛∙𝑛!
=

1

𝑞𝑛𝑛
 

𝑛! − (𝑛 + 1)! = 𝑛! − (𝑛 ⋅ 𝑛! + 𝑛!) = −𝑛 ⋅ 𝑛! 𝑥 is a Liouville number 

 

So there are at least as many numbers in 𝕃 as there are sequences (𝑐1, 𝑐2, … ) with 𝑐𝑘 ∈ {1,2}  

which are in one-to- one correspondence with reals in [0,1] = {∑
𝑎𝑘

2𝑘
: 𝑎𝑘 ∈ {0,1}

∞
𝑘=1 } 

The cardinality of 𝕃 must equal ℝ, there are uncountably many Liouville numbers. 

 

(III) 𝕃 is a dense set in ℝ 

 

For any open interval 𝐽𝑘 = (𝑥 − 𝛿𝑘, 𝑥 + 𝛿𝑘) centered on 𝑥 ∈ ℝ we can pick 𝑝/𝑞 ∈ ℚ in 𝐽𝑘 

and 𝛼𝑘 = 𝑝 𝑞⁄ + 2−𝑛∑ 2−𝑖!∞
𝑖=1  will belong to both 𝕃 and 𝐽𝑘 for 𝑛 large enough. 

With 𝛿𝑘 = 1/𝑘 we get a sequence 𝑎𝑘 in 𝕃 with 𝑥 as a limit point so 𝕃 is a dense set in ℝ.

𝑥 𝑥 −
1

𝑞1
 𝑥 +

1

𝑞1
 𝑥 +

1

𝑞𝑛
𝑛

 𝑥 −
1

𝑞𝑛
𝑛

 

𝑝1
𝑞1

 
𝑝⬚
𝑞𝑛

 
    



App. C.  Solutions ## 

 

𝑧

𝑒𝑧 − 1
= ∑ 𝐵𝑛

𝑧𝑛

𝑛!
𝑛 ≥ 0

 

(IV) 𝕃 is a set with Lebesgue measure zero. 

 

For 𝑛 ∈ ℕ3 and 𝑞 ∈ ℕ2 set: 

𝑉𝑛,𝑞 = ⋃ (
𝑝

𝑞
−
1

𝑞𝑛
,
𝑝

𝑞
+
1

𝑞𝑛
)

∞

𝑝=−∞

      𝕃 ⊆⋃𝑉𝑛,𝑞

∞

𝑞=2

      𝑉3,𝑞 ⊇ 𝑉4,𝑞 ⊇ ⋯ 

At the same time: 

𝕃 ∩ (−𝑚,𝑚) ⊆⋃𝑉𝑛,𝑞

∞

𝑞=2

∩ (−𝑚,𝑚) ⊆⋃ ⋃ (
𝑝

𝑞
−
1

𝑞𝑛
,
𝑝

𝑞
+
1

𝑞𝑛
)

𝑚𝑞

𝑝=−𝑚𝑞

∞

𝑞=2

 

|(
𝑝

𝑞
+
1

𝑞𝑛
) − (

𝑝

𝑞
−
1

𝑞𝑛
)| =

2

𝑞𝑛
   and   𝑛 > 2   ⟹ 

𝜆(𝕃 ∩ (−𝑚,𝑚)) ≤ ∑ ∑
2

𝑞𝑛
=∑

2(2𝑚𝑞 + 1)

𝑞𝑛

∞

𝑞=2

≤ (4𝑚 + 1)∑
1

𝑞𝑛−1

∞

𝑞=2

≤ (4𝑚 + 1)∫
𝑑𝑞

𝑞𝑛−1

∞

1

≤
4𝑚 + 1

𝑛 − 2

𝑚𝑞

𝑝=−𝑚𝑞

∞

𝑞=2

 

lim
𝑛→∞

4𝑚 + 1

𝑛 − 2
= 0   ⟹ 

For every positive integer m, 𝕃 ∩ (−𝑚,𝑚) has Lebesgue measure zero, 

which means that the Lebesgue measure of 𝕃 is zero. 

The transcendental numbers ℝ ∖ 𝔸 are the complement of a null set 𝔸 so 

𝜆(𝕃) = 0 and 𝜆(ℝ ∖ 𝔸) = ∞.     ∎ 

 

 

C.2 Show that the Bernoulli numbers satisfy 𝐵2𝑘+1 = 0 for 𝑘 ≥ 1. 

 

〈𝐵𝑛〉 = 〈1,−
1

2
,
1

6
, 0, −

1

30
, 0,

1

42
, 0, … 〉 

The Bernoulli numbers can be defined as the coefficients of a power series 

Add 𝑧/2 to cancel the term 𝐵1𝑧/1! = −𝑧/2. 

𝑧

𝑒𝑧 − 1
+
𝑧

2
=
𝑧

2
⋅
𝑒𝑧 + 1

𝑒𝑧 − 1
=
𝑧

2
⋅
𝑒𝑧/2 + 𝑒−𝑧/2

𝑒𝑧/2 − 𝑒−𝑧/2
          (=

𝑧

2
coth

𝑧

2
) 

This function is an even function 𝑓(𝑧) = 𝑓(−𝑧) so all its odd powers of 𝑧 must be zero. 

In the expansion of 𝑧/(𝑒𝑧 − 1) all coefficients of 𝑧𝑛 with odd 𝑛 larger than one must be zero. 

𝐵3 = 𝐵5 = 𝐵7 = ⋯ = 0.  

Furthermore: 

𝑧 coth 𝑧 =
2𝑧

𝑒2𝑧 − 1
+
2𝑧

2
=∑𝐵2𝑛

(2𝑧)2𝑛

(2𝑛)!
=∑4𝑛𝐵2𝑛

𝑧2𝑛

(2𝑛)!
𝑛≥0𝑛≥0

 

sin 𝑧 = −𝑖 sinh 𝑧
cos 𝑧 = cosh 𝑖𝑧

→ cot 𝑧 = 𝑖 coth 𝑖𝑧 →    𝑧 cot 𝑧 =∑(−4)𝑛𝐵2𝑛
𝑧2𝑛

(2𝑛)!
𝑛≥0

 



## Mathematical Wanderings 

 

C.3 Prove that ordinary and binomial convolutions, 

  〈𝑓𝑛〉 ⋆ 〈𝑔𝑛〉 = 〈∑𝑓𝑘𝑔𝑛−𝑘

𝑛

𝑘=0

〉  and 〈𝑓𝑛〉 ⋆
𝑏 〈𝑔𝑛〉 = 〈∑(

𝑛
𝑘
) 𝑓𝑘𝑔𝑛−𝑘

𝑛

𝑘=0

〉 

are commutative and associative operators with identity 〈1,0,0, … 〉 

and have a unique inverse for sequences 〈𝑎0, 𝑎1, 𝑎2, … 〉 with 𝑎0 ≠ 0. 

 

Ordinary convolution Binomial convolution 

Elements in sequences are assumed to belong to a field, so properties of ℝ are assumed. 

 

 Commutativity 

〈𝑓𝑛〉 ⋆ 〈𝑔𝑛〉 = 〈∑ 𝑓𝑘𝑔𝑛−𝑘
𝑛
𝑘=0 〉  〈𝑓𝑛〉 ⋆

𝑏 〈𝑔𝑛〉 = 〈∑ (
𝑛
𝑘
) 𝑓𝑘𝑔𝑛−𝑘

𝑛
𝑘=0 〉 

Sum in opposite order 𝑘 ↷ 𝑛 − 𝑘 gives Sum in opposite order and (
𝑛
𝑘
) = (

𝑛
𝑛 − 𝑘

) gives 

〈𝑓𝑛〉 ⋆ 〈𝑔𝑛〉 = 〈𝑔𝑛〉 ⋆ 〈𝑓𝑛〉 〈𝑓𝑛〉 ⋆
𝑏 〈𝑔𝑛〉 = 〈𝑔𝑛〉 ⋆

𝑏 〈𝑓𝑛〉 

 Associativity 

(〈𝑓𝑛〉 ⋆ 〈𝑔𝑛〉) ⋆ 〈ℎ𝑛〉 =                                            (〈𝑓𝑛〉 ⋆
𝑏 〈𝑔𝑛〉) ⋆

𝑏 〈ℎ𝑛〉 = 

∑ 𝑓𝑘1𝑔𝑘2ℎ𝑘3⏟      
𝑘1+𝑘2+𝑘3=𝑛

=

𝑘𝑖

                                                                     ∑ (
𝑛

𝑚, 𝑘3
) [ ∑ (

𝑚
𝑘1, 𝑘2

) 𝑓𝑘1𝑔𝑘2
𝑘1+𝑘2=𝑚

]

𝑚+𝑘3=𝑛

ℎ𝑘3  

〈𝑓𝑛〉 ⋆ (〈𝑔𝑛〉 ⋆ 〈ℎ𝑛〉)                                                                          ∑ (
𝑛

𝑘1, 𝑘2, 𝑘3
)

𝑘1+𝑘2+𝑘3=𝑛

𝑓𝑘1𝑔𝑘2ℎ𝑘3 = 〈𝑓𝑛〉 ⋆
𝑏 (〈𝑔𝑛〉 ⋆

𝑏 〈ℎ𝑛〉) 

 Identity 

The sequence 〈1,0,0, … 〉 = 〈𝛿𝑛0〉 is the identity element for both types of convolution 

〈𝑓𝑛〉 ⋆ 〈𝛿𝑛0〉 = 〈∑ 𝑓𝑘𝛿𝑛−𝑘0
𝑛

𝑘=0
〉 = 〈𝑓𝑛〉             〈𝑓𝑛〉 ⋆

𝑏 〈𝛿𝑛0〉 = 〈∑ (
𝑛
𝑘
)𝑓𝑘𝛿𝑛−𝑘0

𝑛

𝑘=0
〉 = 〈𝑓𝑛〉 

 Inverse 

Let 〈𝑓𝑛〉 be a sequence with 𝑓0 ≠ 0 

〈𝑓𝑛〉 ⋆ 〈𝑔𝑛〉 = 〈1,0,0, … 〉 

 

𝑛 = 0: 

𝑓0𝑔0 = 1 ⟷ 𝑔0 = 𝑓0
−1 

 

Assume 𝑔𝑘 is uniquely defined for each 𝑘 < 𝑛. 

𝑘 = 𝑛: 

𝑓0𝑔𝑛 + ∑ 𝑓𝑘𝑔𝑛−𝑘 = 0 ⟷ 𝑔𝑛 = 𝑓0
−1(−∑ 𝑓𝑘𝑔𝑛−𝑘

𝑛
𝑘=1 )𝑛

𝑘=1   Each 𝑔𝑖 needed is uniquely defined 

 

All elements in the inverse of  〈𝑓𝑛〉 is uniquely defined as long as 𝑓0 ≠ 0. 

Existence of a unique inverse of 〈𝑓𝑛〉 with 𝑓0 ≠ 0 for binomial convolution is proved similarly.



App. C.  Solutions ## 

 

C.4 Use the formula for the resultant, Δ(𝑃) = (−1)𝑛(𝑛−1)/2𝑅(𝑃, 𝑃′)/𝑎𝑛 of  

 𝑃=𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 +⋯+ 𝑎1𝑧 + 𝑎0 = 𝑎𝑛(𝑧 − 𝑟1)(𝑧 − 𝑟2)… (𝑧 − 𝑟𝑛) 

 with 𝑅(𝑃, 𝑄) = |𝑆𝑃,𝑄| where 𝑆𝑃,𝑄 is the Sylvester matrix to find the 

 discriminant of 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 and check that the result 

 is in accordance with the definition ∆(𝑃) ≡ 𝑎𝑛
2𝑛−2 ⋅ ∏ (𝑟𝑖 − 𝑟𝑗)

2
1≤𝑖<𝑗≤𝑛 . 

 

With Mathematica to carry out the calculations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discriminant with terms in lexical order. 

∆(𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥2 + 𝑒) = 

256𝑎3𝑒3 − 192𝑎2𝑏𝑑𝑒2 − 128𝑎2𝑐2𝑒2 + 144𝑎2𝑐𝑑2𝑒 − 27𝑎2𝑑4 + 144𝑎𝑏2𝑐𝑒2 − 6𝑎𝑏2𝑑2𝑒 

+80𝑎𝑏𝑐2𝑑𝑒 + 18𝑎𝑏𝑐𝑑3 + 16𝑎𝑐4𝑒 − 4𝑎𝑐3𝑑2 − 27𝑏4𝑒2 + 18𝑏3𝑐𝑑𝑒 − 4𝑏3𝑑3 − 4𝑏2𝑐3𝑒 + 𝑏2𝑐2𝑑2 



## Mathematical Wanderings 

 

C.5 The resultant 𝑅(𝑓, 𝑔) of two polynomials with coefficients in a field 𝔽 

 where 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎0 and 𝑔(𝑥) = 𝑏𝑚𝑥

𝑚 +⋯+ 𝑏0,  (𝑎𝑛 ≠ 0, 𝑏𝑚 ≠ 0) 

 with roots 𝛼1, … , 𝛼𝑛 and 𝛽1, … , 𝛽𝑚 in the algebraic closure of 𝔽 

 can be defined in two alternate ways: 

𝟏.   𝑅1(𝑓, 𝑔) ≡ 𝑎𝑛
𝑚𝑏𝑚

𝑛 ∏∏(𝛼𝑖 − 𝛽𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

 𝟐.    𝑅2(𝑓, 𝑔) ≡

|

|

|

𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 ⋯ ⋯ 0 0 0
0 𝑎𝑛 𝑎𝑛−1 ⋯ ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ ⋯ 𝑎1 𝑎0 0
0 0 0 ⋯ ⋯ 𝑎2 𝑎1 𝑎0
𝑏𝑚 𝑏𝑚−1 𝑏𝑚−2 ⋯ ⋯ 0 0 0
0 𝑏𝑚 𝑏𝑚−1 ⋯ ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ ⋯ 𝑏1 𝑏0 0
0 0 0 ⋯ ⋯ 𝑏2 𝑏1 𝑏0

|

|

|

⏟                            
                 𝑚 + 𝑛 columns

}
 
 

 
 

𝑚 rows

}
 
 

 
 

𝑛 rows

= |𝑆𝑛,𝑚| 

 

Show that the two definitions are equivalent. 

For convenience in the proof, extend the definitions to cases where polynomials 𝑓 and 𝑔 

may start with initial zero coefficients. Notation 𝑅𝑛,𝑚(𝑓, 𝑔) is used to show that initial zeros 

have been added in the front of 𝑓 or 𝑔 when deg(𝑓) < 𝑛 or deg(𝑔) < 𝑚. 

 

The proof will be by induction over 𝑛 +𝑚. 

 

By definition ∏ 𝑐𝑘𝑘∈∅ = 1, applied to the product of eigenvalues it gives |𝑀| = 1 for a 0×0 matrix.  

𝑛 = 0 and 𝑚 = 0 gives 𝑅1(𝑓, 𝑔) = 1 and 𝑅2(𝑓, 𝑔) = 1 

𝑛 = 0 gives 𝑅1(𝑓, 𝑔) = 𝑎0
𝑚 and 𝑆0,𝑚 = 𝑎0𝐼𝑚 → 𝑅2(𝑓, 𝑔) = 𝑎0

𝑚 

𝑚 = 0 gives 𝑅2(𝑓, 𝑔) = 𝑏0
𝑛 and  𝑆𝑛,0 = 𝑏0𝐼𝑛 → 𝑅2(𝑓, 𝑔) = 𝑏0

𝑛 

Lemma 1. 

𝑅1(𝑓, 𝑔) ≡ 𝑎𝑛
𝑚𝑏𝑚

𝑛 ∏∏(𝛼𝑖 − 𝛽𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

=

{
 

 𝑎𝑛
𝑚∏ 𝑔(𝛼𝑖)

𝑛

𝑖=1
                    (1)

(−1)𝑛𝑚𝑏𝑚
𝑛 ∏ 𝑓(𝛽𝑗)

𝑚

𝑗=1
     (2)

 

These statements follows from 𝑔(𝑥) = 𝑏𝑚∏ (𝑥 − 𝛽𝑗)
𝑚
𝑗=1  and 𝑓(𝑥) = 𝑎𝑛∏ (𝑥 − 𝛼𝑖)

𝑛
𝑖=1  and there 

are 𝑛𝑚 factors 𝛽𝑗 − 𝛼𝑖 in (2) of the wrong sign. In the same way there are 𝑚𝑛 row permutations 

needed to switch places between upper and lower blocks in 𝑆𝑛,𝑚. 𝑅𝑚,𝑛(𝑔, 𝑓) = (−1)
𝑛𝑚𝑅𝑛,𝑚(𝑓, 𝑔). 

Lemma 2. 

If deg(𝑔) ≤ 𝑘 ≤ 𝑚 then 𝑅𝑛,𝑚(𝑓, 𝑔) = 𝑎𝑛
𝑚−𝑘𝑅𝑛,𝑘(𝑓, 𝑔)                        (1) 

If deg(𝑓) ≤ 𝑘 ≤ 𝑛 then 𝑅𝑛,𝑚(𝑓, 𝑔) = (−1)
(𝑛−𝑘)𝑚𝑏𝑚

𝑛−𝑘𝑅𝑘,𝑚(𝑓, 𝑔)    (2) 

(1): first column in 𝑆𝑛,𝑚 is 0 except for 𝑎𝑛. Expanding the determinant repeatedly gives: 

𝑅𝑛,𝑚(𝑓, 𝑔) = 𝑎𝑛𝑅𝑛,𝑚−1(𝑓, 𝑔) = ⋯ = 𝑎𝑛
𝑚−𝑘𝑅𝑛,𝑘(𝑓, 𝑔) 

(2) follows similarly by first using 𝑅𝑚,𝑛(𝑔, 𝑓) = (−1)
𝑛𝑚𝑅𝑛,𝑚(𝑓, 𝑔). 



App. C.  Solutions ## 

 

Lemma 3. 

Let 𝑓, 𝑔 and ℎ be polynomials with deg(𝑓) ≤ 𝑛 and deg(𝑔) ≤ 𝑚. 

𝑛 ≥ 𝑚 and deg(ℎ) ≤ 𝑛 −𝑚 ⇒ 𝑅𝑛,𝑚(𝑓 + ℎ𝑔, 𝑔) = 𝑅𝑛,𝑚(𝑓, 𝑔)        (1) 

𝑛 ≤ 𝑚 and deg(h) ≤ 𝑚 − 𝑛 ⇒ 𝑅𝑛,𝑚(𝑓, 𝑔 + ℎ𝑓) = 𝑅𝑛,𝑚(𝑓, 𝑔)        (2) 

 

(1): deg(𝑓 + ℎ𝑔) ≤ max(deg(𝑓) , deg(ℎ𝑔)) ≤ max(𝑛, 𝑛 − 𝑚 +𝑚) = 𝑛. 

𝑆𝑛,𝑚(𝑓 + ℎ𝑔) is obtained from 𝑆𝑛,𝑚(𝑓, 𝑔) by row operations 

that do not change its determinant 𝑅𝑛,𝑚(𝑓, 𝑔). If ℎ(𝑥) = 𝑐𝑙𝑥
𝑙 +⋯+ 𝑐0  

add 𝑐𝑘 times row 𝑛 + 𝑖 − 𝑘 to row 𝑖 for 𝑖 = 1, … ,𝑚 and 𝑘 = 0,… , 𝑙. 

(2) is shown in the same manner or by using 𝑅𝑚,𝑛(𝑔, 𝑓) = (−1)
𝑛𝑚𝑅𝑛,𝑚(𝑓, 𝑔). 

 

Use the induction assumption to assume 𝑅2(𝑓, 𝑔) equals the formulas (1) and (2) 

of lemma 1 for all smaller values of 𝑛 +𝑚. 

Case 1: 0 < 𝑛 ≤ 𝑚  with deg(𝑓) = 𝑛 and deg(𝑔) = 𝑚. 

𝑔/𝑓 →   𝑔 = 𝑞𝑓 + 𝑟 with deg(𝑟) < deg (𝑓) and deg(𝑞) = 𝑚 − 𝑛. Lemma 3 gives 

         𝑅𝑛,𝑚(𝑓, 𝑔) = 𝑅𝑛,𝑚(𝑓, 𝑔 − 𝑞𝑓) = 𝑅𝑛,𝑚(𝑓, 𝑟). 

Case 1a: If 𝑟 ≠ 0, let 𝑘 = deg(𝑟) ≥ 0. By lemma 2 and the inductive hypothesis (using lemma1): 

        𝑅𝑛,𝑚(𝑓, 𝑔) = 𝑎𝑛
𝑚−𝑘𝑅𝑛,𝑘(𝑓, 𝑟) = 𝑎𝑛

𝑚−𝑘𝑎𝑛
𝑘∏𝑟(𝛼𝑖)

𝑛

𝑖=1

= 𝑎𝑛
𝑚∏𝑔(𝛼𝑖)

𝑛

𝑖=1

 

Case 1b: If 𝑟 = 0 then 𝑔 = 𝑞𝑓 but 𝑛 > 0 and 𝑆𝑛,𝑚(𝑓, 𝑟) = 𝑆𝑛,𝑚(𝑓, 0) with the last 𝑛 rows zero so 

𝑅𝑛,𝑚(𝑓, 𝑟) = 0 gives 𝑅𝑛,𝑚(𝑓, 𝑔) = 0. Since 𝑔(𝛼1) = 𝑞(𝛼1)𝑓(𝛼1) = 0 so 𝛽𝑘 − 𝛼1 = 0 and 

𝑅2(𝑓, 𝑔) vanishes as well. 

Case 2: Suppose 𝑛 = 0. This case has been shown true in the initial remark starting the induction. 

Case 3: If 𝑚 < 𝑛 with deg(𝑔) = 𝑚 and deg(𝑓) = 𝑛. 

This reduces to case 1 and 2 by 𝑅𝑚,𝑛(𝑔, 𝑓) = (−1)
𝑛𝑚𝑅𝑛,𝑚(𝑓, 𝑔) 

Case 4: If deg(𝑔) < 𝑚 or deg(𝑓) < 𝑛 then the situation is handled by using lemma 2. 

If both deg(𝑔) < 𝑚 and deg(𝑓) < 𝑛 then 𝑎𝑛 = 𝑏𝑚 = 0 gives 𝑅1(𝑓, 𝑔) =  𝑅2(𝑓, 𝑔) = 0. 

This proof has been taken from a paper “Resultant and discriminant of polynomials”. It popped up 

when I made an Internet search and it just happened to be written by Svante Janson who was the  

team leader when I was taking part in the International Mathematical Olympiad in Paris in 1983. 

 


